首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of Tomato yellow leaf curl virus (TYLCV; genus Begomovirus, family Geminiviridae) in the major tomato‐growing areas of Iran was determined using TAS‐ELISA and PCR. The nucleotide sequences of the coat protein (CP) gene and intergenic region (IR) of eight Iranian isolates were determined. CP nucleotide identities among the Iranian isolates were 96–98%, and showed 94–96% identity with TYLCV‐IR [IR:Ira:98] and TYLCV‐IL [IL:Reo:86]. However, they showed low identity (68–69%) with ToLCIRV‐[IR:Ira]. Sequence analyses of IR indicated that seven Iranian isolates had sequence identity of 93–100% with each other, and 76% identity with the Jiroft isolate; identities of 75–79% with TYLCV‐IR[IR:Ira:98] were observed in every case, and 59–62% identity with ToLCIRV‐[IR:Ira]. The IR nucleotide sequences of Iranian isolates showed 92–93% identity with TYLCV‐IL[IL:Reo:86], except the Jiroft isolate (75%). The CP and IR sequence analyses suggested that eight Iranian TYLCV isolates probably differ from ToLCIRV‐[IR:Ira]. Based on IR sequence comparisons and phylogenetic analyses, the Iranian isolates were divided into two groups. The first major group (A), consists of seven virus isolates, was most closely related to TYLCV‐IL[IL:Reo:86], and relatively divergent from TYLCV‐IR [IR:Ira:98] and ToLCIRV‐[IR:Ira]. However, the Jiroft isolate from group B did not show high similarity with TYLCV‐IR[IR:Ira:98], ToLCIRV‐[IR:Ira], and TYLCV‐IL[IL:Reo:86], suggesting that the isolate may be a divergent variant. The differences are in a range that suggests different strains or species from TYLCV‐IR[IR:Ira:98] and ToLCIRV‐[IR:Ira] are probably associated with tomato yellow leaf curl disease in Iran.  相似文献   

2.
Tomato yellow leaf curl virus disease (TYLCVD) has been observed in Tunisia for more than 20 years. Until year 2004, only the Tomato yellow leaf curl Sardinia virus‐Sicily (TYLCSV‐[Sic]) was detected in tomato, pepper and bean crops. In the Sahel region, some tomato samples showing severe TYLCVD symptoms were collected from greenhouses in 2004 and 2005. Typing of these isolates revealed for the first time the presence of the TYLCV Israel in Tunisia. This result was confirmed by using several sets of specific primers and by sequencing. This species has also been detected on pepper and bean collected from fields in the same region. The sequencing of a tomato and a bean isolate showed that they both share more than 97% of sequence identity with the TYLCV from Dominican Republic ( AF024715 ). The TYLCV has been found in single and mixed infection with the TYLCSV‐[Sic].  相似文献   

3.
以番茄为试验材料,研究番茄黄化曲叶病毒(TYLCV)侵染对植株叶片叶绿素含量、净光合速率、气孔导度、胞间CO2浓度和叶绿体超微结构的影响.结果表明:TYLCV侵染番茄后,叶片叶绿素a、b以及总叶绿素含量分别下降50.2%、24.19%和43.84%,叶片净光合速率和气孔导度分别下降43.28%、27.07%,胞间CO2浓度增加13.04%.与健康叶片相比,叶绿体变形,叶绿体基质片层大部分消解,基粒结构消失,叶绿体外膜和内膜剥离,质壁分离和细胞膜内陷,细胞器消解.研究表明,TYLCV侵染破坏了番茄叶片的叶绿体结构,严重影响番茄叶片的光合作用.  相似文献   

4.
云南番茄曲叶病是由烟草曲茎病毒引起的   总被引:9,自引:0,他引:9  
从云南省德宏田间表现曲叶症状的番茄植株上分离到病毒分离物Y41,采集的带病植株在实验室可经烟粉虱(Bemisia tabaci)传播到健康的番茄.用针对非洲木薯花叶病毒(ACMV)、印度木薯花叶病毒(ICMV)及秋葵曲叶病毒(OLCV)的15种单抗对病样进行TAS-ELISA检测,结果表明,番茄曲叶病是由菜豆金色花叶病毒属(Begomovirus)病毒引起的,但其抗原表位型与我国广西报道的中国番茄黄化曲叶病毒(TYLCCV)不同.对Y41进行DNA-A全序列测定和分析表明,Y41 DNA-A全长2743个核苷酸,共编码6个ORF,其中病毒链编码AV1和AV2两个ORF,互补链编码AC1、AC2、AC3和AC4 4个ORF.对Y41及其它双生病毒CP进行同源性比较及系统进化关系分析表明,Y41属于"旧世界"的粉虱传双生病毒,与我国报道的烟草曲茎病毒(TCSV)及印度报道的番茄曲叶Karnataka病毒(ToLCKV)同源性最高,达到98.8%.进一步比较基因组发现,Y41与TCSV AV1、AV2、AC1、AC2、AC3、AC4各ORF同源性分别为98.8%、96.6%、86.4%、93.3%、89.6%和89.7%,基因间隔区(IR)、DNA-A同源性分别为92.1%和93.4%,且在基因间隔区内含有相似的重复子序列及排列方式.这些结果表明:Y41是TCSV在自然条件下侵染番茄的一个分离物.  相似文献   

5.
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed.  相似文献   

6.
A leaf curl disease with symptoms typical of begomoviruses was observed in bean (Phaseolus vulgaris) at the Main Research Farm of the Indian Institute of Pulses Research, Kanpur, India. Infected plants had severe distortion of leaves and the plants were unproductive. PCR indicated the involvement of French bean leaf curl virus (JQ866297), a recently described Begomovirus, and Tomato leaf curl Gujarat virus (ToLCGV). The full‐length genome of ToLCGV associated with leaf curl disease of bean was 2757 nucleotides long and had maximum identity (97–98%) with seven isolates of ToLCGV (AY234383, AF449999, EU573714, GQ994098, AY190290, FR819708, AF413671) and is designated as Tomato leaf curl Gujarat virus‐(IN:Knp:Bean:2013) (KF440686). To the best of our knowledge, this is the first record of ToLCGV infecting a leguminous host, P. vulgaris.  相似文献   

7.
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.  相似文献   

8.
C. Yang    S. Jia    Z. Liu    G. Cui    L. Xie    Z. Wu 《Journal of Phytopathology》2008,156(9):553-555
Virus isolates were obtained from three Malvastrum coromandelianum plants showing vein thickening symptoms in Fujian Province, China. A fragment of approximately 500 bp was amplified from all the samples by PCR using the special degenerate primer pair PA/PB for begomoviruses. Sequence differences among the partial DNA-A fragments revealed that all three samples contained two virus isolates. Isolate I and isolate II share the highest nucleotide sequence identity (98–99%), respectively, with Malvastrum leaf curl Guangdong virus (MLCuGdV) and Ageratum yellow vein virus (AYVV). The complete nucleotide sequences of Fs1 and Fs2 isolates representing each virus were determined to be 2741 and 2756 nucleotides, respectively. Alignment and phylogenetic analysis showed that the complete DNA-A sequences of Fs1 and Fs2 were most closely to those of MLCuGdV (AM503104) and AYVV (AB100305), with 90.4% and 93.3% nucleotide sequence identity, respectively. Fs1 and Fs2 are considered therefore to be isolates of MLCuGdV and AYVV, respectively. This is the first report of AYVV in M. coromandelianum.  相似文献   

9.
This paper reports development of a set of common primers and four sets of virus specific primers to detect ToLCNDV, ToLCBV, ToLCGV and ToLCKV, which are associated with tomato leaf curl disease (TomLCD) in India. The primer sets were first validated by amplification of desired genomic fragments from the cloned genomes of the four begomoviruses and then were tested for the detection of these viruses in field samples collected from different locations in India. Of the 26 TomLCD samples tested by PCR, 22 tested positive with the set of common primers and 16 tested positive for the target begomoviruses. ToLCNDV was detected in four samples, ToLCBV in six, ToLCKV in four, and ToLCGV in five samples. This limited survey shows that ToLCNDV and ToLCBV are distributed in northern and southern India, whereas ToLCKV and ToLCGV have a wider distribution. Mixed infection by two target viruses was observed in three TomLCD samples collected from Maharashtra, Punjab and Uttar Pradesh; two of these samples were infected with ToLCKV, which is prone to recombination. The results of the present study are indicative of association of uncharacterized variants or new begomoviruses with TomLCD in India, as (a) 27% of the samples found positive by the set of common primers did not amplify with species specific primers, and (b) 16% of the samples tested negative by PCR using common primers, although all the samples were collected from plants showing typical TomLCD symptoms. These plants might have been infected by some uncharacterized virus(es).  相似文献   

10.
11.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics.  相似文献   

12.
13.
The key regions in Panama involved in open field‐ and greenhouse‐grown commercial tomato production, including the Chiriquí, Veraguas, Herrera, Los Santos, Coclé and Panama Oeste provinces, were surveyed for the incidence and distribution of begomoviruses in the growing seasons of 2011 and 2012. The surveys took place in 14 of the 51 districts of the above‐mentioned provinces and comprised all relevant tomato production areas of the provinces. A total of 28 tomato plots were surveyed. The exact location of each plot was geo‐referenced using a hand‐held Global Positioning System unit. In total, 319 individual tomato plants (181 in 2011 and 138 in 2012) were sampled. Plants displayed diverse combinations of virus‐like symptoms of different severity, including necrosis, yellowing, mosaic, mottling, rolling, curling, distortion and puckering of leaves, reduced leaf size, and stunted growth. DNA was extracted from each plant for a subsequent polymerase chain reaction (PCR) analysis, using two sets of degenerate primers able to detect members of the genus Begomovirus. The samples displaying a positive reaction were subsequently analysed with specific primer pairs to identify the affecting begomoviruses. A total of 42.3% of all collected samples showed a positive signal to PCRs. Three begomovirus species were detected with the species‐specific set of primers; in particular, in the samples obtained in 2011, Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) were detected, while in the 2012 samples, only PYMPV and ToLCSiV were found. To our knowledge, this is the first reported incidence of ToLCSiV and TYMoV in Panamanian tomato crops.  相似文献   

14.
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.  相似文献   

15.
Transgenic tomato plants expressing full‐length (CPV1) and truncated coat protein (CP) gene (CPV2) of Tomato leaf curl Taiwan virus (ToLCTWV) were generated by Agrobacterium‐mediated transformation. Transgene integration and expression was confirmed by PCR and Southern blotting and Northern analysis, respectively. Resistance was evaluated both in plants of T0 and T1 progenies using viruliferous whiteflies under two different inoculum pressures (10–15 and 40–50 whiteflies/plant). Upon inoculation with ToLCTWV using viruliferous whiteflies, various levels of phenotypic reaction were observed. No complete resistance was observed in any of the plants tested. The reaction of the transgenic tomato lines carrying full‐length and truncated CP gene to ToLCTWV phenotype was (i) susceptible as non‐transgenic control, (ii) delayed symptom expression, (iii) complete susceptible (from delayed symptom expression phenotype) and (iv) recovered phenotype (either plants from symptom expression as non‐transgenic plants or delayed symptom expression phenotype). Dot blot quantification of the ToLCTWV using the replicase gene as a probe revealed that the recovered phenotypes accumulated a low level of ToLCTWV, and virus concentration was gradually reduced from 10 to 14 weeks postinoculation. The possible mechanisms of CP‐mediated resistance are discussed.  相似文献   

16.
【背景】番茄黄化曲叶病毒(TYLCV)是由媒介昆虫烟粉虱传播的一种双生病毒,对蔬菜及烟草等经济作物造成严重危害。前人资料表明,该病毒于2006年传人我国南方地区,2007年传人山东省,2008年后在山东各地逐渐蔓延扩散。【方法】为了考证TYLcV传人山东省的时间,本研究利用mtCOI基因对于2005和2006年7—8月份在山东省不同地区作物上共采集的15份烟粉虱样品进行了生物型鉴定,并进一步检测了烟粉虱携带TYLCV情况,同时对PCR扩增产物进行了测序分析。【结果】2005年的4份样品烟粉虱生物型均为B型,均不携带TYLCV。2006年的11份烟粉虱样品为B型与Q型混合样品,其中,2份烟粉虱样品检测到TYLCV,进一步证实该病毒为TYLCV。【结论与意义】本研究首次证实了TYLCV早在2006年就已经传入山东省。研究结果不仅对于防控该病毒具有重要指导意义,而且对于其入侵生物学研究也具有重要参考价值。  相似文献   

17.
18.
M. Jiu    X.-P. Zhou    S.-S. Liu 《Journal of Phytopathology》2006,154(10):587-591
Acquisition and transmission was studied of Tomato yellow leaf curl China virus (TYLCCNV) and Tobacco curly shoot virus (TbCSV) by the B and a non‐B biotype (China‐ZHJ‐1) of Bemisia tabaci from Zhejiang, China. The frequency of TYLCCNV and TbCSV detection by PCR in whitefly adults increased with increasing length of feeding on virus‐infected plants. The virus DNA was detected by PCR in 40% of the B biotype adults tested after a period of 30 min access to infected plants and in all adults after a 12‐h period of access. All ZHJ‐1 adults acquired TYLCCNV and TbCSV after a 48‐h period of access to the virus‐infected plants. Viruliferous B and ZHJ‐1 adults retained TYLCCNV DNA for their entire life when placed on healthy cotton plants. Viruliferous ZHJ‐1 adults retained TbCSV DNA for their entire life when placed on healthy cotton plants but the B biotype adults did not. Transmission of TYLCCNV was achieved with one B or ZHJ‐1 adult per plant, and the probability of transmission reached 100% when the number of adults was increased to 10 per plant. The efficiency for TYLCCNV transmission to healthy plants by adults of both B and ZHJ‐1 was much higher than that for TbCSV.  相似文献   

19.
Natural occurrence of yellow mosaic disease was observed on Armenian cucumber (Cucumis melo var. flexuoses) and wild melon (C. callosus var. agrestis) with disease incidences of ~36 and ~27%, respectively. Association of tomato leaf curl Palampur virus (ToLCPV) with the disease was investigated by Polymersae chain reaction (PCR) using begomovirus-specific primers. Full-length genome was amplified by rolling circle amplification (RCA) method from representative samples of C. melo and C. callosus. RCA products obtained were cloned and sequenced. Analyses of sequence data revealed the presence of full-length begomoviral genome of 2756 nucleotides with the gene arrangement of a typical begomovirus: HQ848383 (C. melo) and GU253914 (C. callosus). Both the isolates shared 99% sequence identity together and high 97–99% identities and the closest phylogenetic relationships with ToLCPV strains reported worldwide, hence identified as two new members of ToLCPV. Natural occurrence of ToLCPV on C. melo and C. callosus is the first report.  相似文献   

20.
Kidney bean (Phaseolus vulgaris) plants exhibiting foliar yellow mosaic symptoms and some leaf crumpling were identified in the Al Batinah region of Oman. Rolling circle amplification and polymerase chain reaction identified a bipartite begomovirus (family Geminiviridae) and a betasatellite in association with the symptomatic plants. Analysis of full‐length sequences showed the virus to be Mungbean yellow mosaic Indian virus (MYMIV) and the betasatellite Tomato leaf curl betasatellite (ToLCB). This is the first identification of a legume‐adapted begomovirus in Oman and the first identification of MYMIV in association with the betasatellite ToLCB. The isolate of MYMIV from Oman shows the greatest levels of sequence identity to isolates occurring in South Asia and South‐East Asia, suggesting that the virus has only recently been introduced. The significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号