首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevation of intracellular free zinc ([Zn2+]i) probably contributes to cell death in injury paradigms involving calcium deregulation and oxidative stress such as glutamate excitotoxicity. However, it is difficult to monitor both ions simultaneously in live cells. Here we present a new method using fluorescence microscopy and the ion sensitive indicators fura-2FF and FluoZin-3 to monitor both [Ca2+]i and [Zn2+]i in primary cortical neurons. We show that the new single wavelength dye FluoZin-3 responds robustly to small zinc loads, is insensitive to high Ca2+ or Mg2+, and is relatively unaffected by low pH or oxidants. The ratiometric indicator fura-2FF is sensitive to both Ca2+ and Zn2+. However, in conditions analogous to excitotoxic glutamate exposure where [Ca2+]i is high relative to [Zn2+]i, we found that fura-2FF responds mostly to [Ca2+]i but is relatively unaffected by low [Zn2+]i. Moreover, fura-2FF ratio changes caused by high [Ca2+]i or high [Zn2+]i could be distinguished because each ion produces a different spectral response. Finally, dual dye experiments showed that FluoZin-3 and fura-2FF respond robustly to [Zn2+]i and [Ca2+]j, respectively, in the same neurons during intense glutamate exposure. These studies provide a novel method for the simultaneous detection of both calcium and zinc in cells.  相似文献   

2.
Jan CR 《Life sciences》2005,77(5):589-599
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.  相似文献   

3.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

4.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

5.
In Madin-Darby canine kidney (MDCK) cells, the effect of 2-O-methyl PAF, an inactive analogue of platelet activating factor (PAF), on intracellular Ca2+ concentration ([Ca2+]i) was measured by using the Ca2+-sensitive fluorescent dye fura-2. 2-O-methyl PAF (> or = 15 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. 2-O-methyl PAF-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. 2-O-methyl PAF-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. The 2-O-methyl PAF-induced Ca2+ influx was blocked by nifedipine, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which 2-O-methyl PAF failed to increase [Ca2+]i; also, pretreatment with 2-O-methyl PAF depleted thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not 2-O-methyl PAF)-induced [Ca2+]i rise. These findings suggest that 2-O-methyl PAF evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release.  相似文献   

6.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular CaCa2+ concentration ([Ca2+]i) and proliferation was examined by using the Ca(2 +)-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (> or =1 micro M) caused an increase of [CaCa2+]i in a concentration-dependent manner. Celecoxib-induced [CaCa2+]i increase was partly reduced by removal of extracellular CaCa2+. Celecoxib-induced CaCa2+ influx was independently suggested by MnCa2+ influx-induced fura-2 fluorescence quench. In Ca(2 +)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2 +)-ATPase, caused a monophasic [CaCa2+]i increase, after which celecoxib only induced a tiny [CaCa2+]i increase; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [CaCa2+]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [CaCa2+]i increases. Overnight incubation with 1 or 10 micro M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [CaCa2+]i increase in renal tubular cells by stimulating both extracellular CaCa2+ influx and intracellular CaCa2+ release and is highly toxic to renal tubular cells in vitro.  相似文献   

7.
In human breast cancer cells, the effect of the widely prescribed estrogen diethylstilbestrol (DES) on intracellular Ca2+ concentrations ([Ca2+]i) and cell viability was explored by using fura-2 and trypan blue exclusion, respectively. DES caused a rise in [Ca2+]i in a concentration-dependent manner (EC50 = 15 microM). DES-induced [Ca2+]i rise was reduced by 80 % by removal of extracellular Ca2+. DES-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that DES induced extracellular Ca2+ influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of DES on [Ca2+]i was greatly inhibited. Conversely, pretreatment with DES to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+, whereas ionomycin added afterward still released some Ca2+. These findings suggest that in human breast cancer cells, DES increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum. Acute trypan blue exclusion studies suggest that 10-20 NM DES killed cells in a time-dependent manner.  相似文献   

8.
Changing extracellular pH (pHo) from 7.4 to 6.1 increased [3H]inositol bis- and trisphosphates approximately 10- and 5-fold, respectively, in 15 s in human fibroblasts. [3H]Inositol phosphate increased less rapidly than the polyphosphates. Bradykinin similarly increased [3H]inositol phosphates. Shifting pHo from 7.4 to 6.0 evoked a large spike in cytosolic free Ca2+ [( Ca2+]i) which was primarily caused by the release of stored Ca2+. Changing pHo from 7.4 to 6.0 decreased cytoplasmic pH to approximately 7.0. Moderate decreases in intracellular pH had no effect on [Ca2+]i or 45Ca2+ efflux. Decreasing pHo strikingly increased 45Ca2+ efflux and decreased total cell Ca2+ similarly to bradykinin. Changing pHo from 7.4 to approximately 6.4 produced half-maximal effects on [Ca2+]i, 45Ca2+ efflux, and total Ca2+. Cycling pHo between 7.4 and 6.0 produced repetitive decreases and increases in total Ca2+. Bradykinin released the Ca2+ which was reaccumulated after an acid pulse indicating that Ca2+ had returned to the hormone-sensitive pool. Decreasing pHo also released stored Ca2+ from coronary endothelial, neuroblastoma, and umbilical artery muscle cells, but not from rat aortic smooth muscle or human epidermoid carcinoma (A431) cells. We suggest that lowering pHo stimulates a phosphoinositidase-coupled receptor by protonating a functional group with a pKa near 6.5.  相似文献   

9.
The influence of the transmembrane Na+ gradient on the intracellular free calcium concentration, [Ca2+]i, was studied in Sepharose gel-filtered platelets from healthy human subjects, using the Ca-sensitive fluorescent dye, fura-2. Raising the internal Na+ concentration, [Na+]i, by Na+ pump inhibition with 0.05 mM ouabain, without changing external Na+ did not cause a significant increase in [Ca2+]i. Substitution of extracellular Na+ by iso-osmolar sucrose induced a rapid (half-time about 2 min) and significant rise in [Ca2+]i; this effect was amplified in Na-loaded platelets. Partial restitution of external Na+ in these cells with increased [Ca2+]i promoted a significant and rapid Na+ concentration-dependent fall in [Ca2+]i; little decline in [Ca2+]i was observed if K+ was used instead of Na+. These observations represent in vitro evidence for the existence of a Na/Ca exchange mechanism in human platelets that may, in vivo, participate in the control of [Ca2+]i.  相似文献   

10.
The effect of the oxidant t-butyl hydroperoxide on intracellular free levels of Ca2+ ([Ca2+]i) in PC12 pheochromocytoma cells was examined by using fura-2 as a fluorescent dye. t-Butyl hydroperoxide induced an increase in [Ca2+]i in a concentration-dependent fashion between 50-250 microM with an EC50 of 100 microM. The [Ca2+]i signal consisted of a slow rise and a sustained phase. The response was decreased by 65% by removal of extracellular Ca2+. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) abolished 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase, and conversely, pretreatment with t-butyl hydroperoxide abrogated thapsigargin-induced [Ca2+]i increase. The 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase in Ca2+ medium was reduced by 42 +/- 5% by pretreatment with 0.1 microM nicardipine but not by 10 microM verapamil, nifedipine, nimodipine or diltiazem, or by 50 microM La3+ or Ni2+. Pretreatment with 10 microM t-butyl hydroperoxide for 40 min did not affect 10 microM ATP-induced [Ca2+]i increase. Together, the results show that t-butyl hydroperoxide induced significant [Ca2+]i increase in PC12 cells by causing store Ca2+ release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-independent manner and by inducing Ca2+ influx via a nicardipine-sensitive pathway.  相似文献   

11.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

12.
The effect of NPC-14686, a potential anti-inflammatory drug, on cytosolic free Ca2+ levels ([Ca2+]i) and growth in PC3 human prostate cancer cells was examined by using fura-2 as a fluorescent Ca2+ indicator and WST-1 as a fluorescent growth dye. NPC-14686 at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 100 microM. NPC-14686-induced Ca2+ influx was confirmed by Mn2+ quench of fura-2 fluorescence. The Ca2+ signal was also reduced by removing extracellular Ca2+. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ nearly abolished 200 microM NPC-14686-induced Ca2+ release; and conversely pretreatment with NPC-14686 completely inhibited thapsigargin-induced Ca2+ release. The Ca2+ release induced by 200 microM NPC-14686 was not affected by inhibiting phospholipase C with 2 microM U73122. Overnight treatment with 1-500 microM NPC-14686 decreased cell viability in a concentration-dependent manner. These findings suggest that in human PC3 prostate cancer cells, NPC-14686 increases [Ca2+]i by evoking extracellular Ca2+ influx and releasing intracellular Ca2+ from the endoplasmic reticulum via a phospholiase C-independent manner. NPC-14686 may be cytotoxic to prostate cancer cells.  相似文献   

13.
C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A2-dependent arachidonic acid liberation. Since phospholipase A2 is a Ca2+-sensitive enzyme, we have examined the role of the agonist-stimulated Ca2+ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca2+ levels ([Ca2+]i) of C62B cells following acetylcholine treatment. In the presence of extracellular Ca2+, acetylcholine induces a biphasic [Ca2+]i response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A2 response. The initial [Ca2+]i peak is not altered by the absence of external Ca2+ and therefore reflects intracellular Ca2+ mobilization. The sustained elevation phase is dependent on the influx of external Ca2+; it is lost in Ca2+-free medium and restored on the addition of Ca2+. Pretreating cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca2+]i response without affecting the sustained elevation in [Ca2+]i. This suggests that the release of internal Ca2+ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca2+ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A2 activation does not require normal intracellular Ca2+ release. Stimulated arachidonate accumulation is totally inhibited in Ca2+-free medium and restored by the subsequent addition of Ca2+. Pretreatment with verapamil, a voltage-dependent Ca2+ channel inhibitor, also blocks both the sustained [Ca2+]i elevation and arachidonate liberation without altering peak intracellular Ca2+ release. We conclude that the influx of extracellular Ca2+ is tightly coupled to phospholipase A2 activation, whereas large changes in [Ca2+]i due to mobilization of internal Ca2+ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A2 activation.  相似文献   

14.
The objective of this study was to evaluate the role of mitochondrial Ca2+ uptake (MCU) in modulation (shaping) of the glutamate (Glu)-induced changes in neuronal cytoplasmic Ca2+ ([Ca2+]i). In order to block MCU, nerve cells were treated with mitochondrial inhibitors (MI) inducing collapse of the mitochondrial potential (Delta Psim). Measurements of changes in [Ca2+]i were performed using either the low-affinity (fura-2FF) or high-affinity (fura-2) Ca2+ indicators. Loading of nerve cells with rhodamine 123 made it possible to monitor changes in Delta Psim. In the first series of experiments it was shown that blockade of MCU in fura-2FF-loaded cells with a cocktail of rotenone (2 microM)+oligomycin (2.5 microg/ml) greatly (2.53+/-0.4 times, n=61) increased the [Ca2+]i response to a 1-min Glu (100 microM) pulse. In fura-2-loaded cells, this increase was small (less than 1.3 times) or absent. In the second series of experiments, cocktails of rotenone+oligomycin or FCCP (1 microM)+oligomycin were applied during a prolonged Glu application. This produced strong mitochondrial depolarisation and an additional [Ca2+]i increase. In most cells the latter could be reversed or prevented by a removal of external Ca2+. The MI-induced additional [Ca2+]i increase was especially pronounced in cells loaded with fura-2FF. In some neurones a removal of external Ca2+ did not produce a decrease in [Ca2+]i during combined Glu+MI application, suggesting an impairment of [Ca2+]i extrusion mechanisms of these cells. The conclusion is drawn that MCU makes a considerable contribution to regulation of [Ca2+]i responses caused by Ca2+ influx via Glu-activated ionic channels. The reasons for a quantitative difference between [Ca2+]i responses observed in fura-2- and fura-2FF-loaded neurones are discussed.  相似文献   

15.
Isolated rat heart myocytes were loaded with both the Ca2+ sensitive fluorescent probe fura-2/AM and the fluorescent pH indicator 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM). Changes in [Ca2+]i and pHi were measured simultaneously using digitized video fluorescence microscopy. In measurement of [Ca2+]i and pHi, the ratios of dual-loaded cells were not different from single-loaded cells. Using this method, [Ca2+]i and pHi in myocytes were 48 +/- 7 nM and 7.17 +/- 0.05. It is concluded that [Ca2+]i and pHi could be measured simultaneously in isolated myocyte using dual-loading of fura-2 and BCECF.  相似文献   

16.
Glioma C6 cells were transfected with a plasmid containing the calretinin (CR) and green fluorescent protein (GFP) coding regions to analyze the effect of CR's presence on [Ca2+]i. Positive transfectants were identified by the detection of GFP and [Ca2+]i was measured using fura-2 as a probe. We found that neither the basic [Ca2+]i nor activated [Ca2+]i achieved by exposure to ionomycin, ADP or thapsigargin were affected by CR's presence in transfected cells, despite the ability of CR to bind Ca2+ as part of fusion protein. The level of expressed CR was estimated as at least 1 microM. The presented results suggest that CR's function is unlikely to be an intracellular Ca2+-buffer and support the hypothesis that CR might be involved in a specific Ca2+-dependent process. The results of this work also show that the S65T mutant of GFP is compatible with fura-2 measurements of intracellular [Ca2+]. We have demonstrated that the presence of GFP, as a transfection marker of glioma C6 cells, does not disturb fura-2 fluorescence, the basal or activated [Ca2+]i in these cells.  相似文献   

17.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

18.
Thapsigargin, a sesquiterpene lactone with potent irritant and tumour-promoting activities, stimulates a rapid (within 15 s) transient increase in intracellular [Ca2+] in the NG115-401L neural cell line, as measured by the fluorescent indicator dye fura-2. This increase in cytoplasmic free [Ca2+] is concentration-dependent (ED50 around 20 nM) and occurs in the absence of extracellular Ca2+. Activation of NG115-401L cells by the inflammatory peptide bradykinin generates inositol phosphates, which parallel increases in intracellular [Ca2+]. However, the rise in cytoplasmic [Ca2+] stimulated by thapsigargin occurs in the absence of detectable production of inositol phosphates. Thapsigargin is unlike phorboid tumour promoters in that it has no action on two non-invasive indicators of phorbol stimulation of these cells, i.e. [3H]choline metabolite production and rise in intracellular pH. These data suggest that thapsigargin releases Ca2+ from an intracellular store by a novel mechanism, independent of the hydrolysis of phosphoinositides and concomitant activation of protein kinase C. Thus thapsigargin may provide a valuable tool for the analysis of intracellular signalling mechanisms.  相似文献   

19.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

20.
Caffeine-Sensitive Calcium Stores in Bovine Adrenal Chromaffin Cells   总被引:4,自引:2,他引:2  
Caffeine was used to study the intracellular Ca2+ pools of bovine chromaffin cells. Its effects on cytosolic Ca2+ concentration ([Ca2+]i) were examined using fura-2. Caffeine caused a transient increase in [Ca2+]i in the presence or absence of extracellular Ca2+. In the former case, the caffeine-induced [Ca2+]i increase was higher and stayed above the basal value for several minutes. In the latter case, the [Ca2+]i rise was lower and fell to the basal level within 1 min. These results suggest that caffeine increases [Ca2+]i by causing both Ca2+ influx and Ca2+ release from intracellular pools. In the absence of extracellular Ca2+, ionomycin but not caffeine caused a further increase in [Ca2+]i in cells that had been treated with caffeine. Apparently there are at least two intracellular Ca2+ pools, only one of which is sensitive to caffeine. The caffeine-induced [Ca2+]i rise became smaller when the cells were pretreated with the inositol trisphosphate-generating agonists, methacholine and bradykinin. In addition, methacholine was unable to initiate a [Ca2+]i transient after the cells had been treated with caffeine. The results indicate that the caffeine-sensitive Ca2+ pools overlap with the inositol trisphosphate-sensitive pool and that the size of the latter pool is smaller than that of the former. The caffeine-sensitive Ca2+ pools were refilled after high K+ treatment, which suggests that the caffeine-sensitive Ca2+ pools may be important in buffering the cytosolic Ca2+. The effect of caffeine on [Ca2+]i is not due to inhibition of phosphodiesterase. Our results support a Ca2+ entry model in which depletion of intracellular Ca2+ pools controls the rate of Ca2+ entry across the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号