首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been emphasized that specific bindings between membrane glycoproteins and membrane lectin-like substances are important in cell-to-cell interactions. We explored the surface of granulocyte-macrophage precursor cells (CFU-gm) by the differential agglutination technique. Enrichment of CFU-gm in the agglutinated fraction, containing the cells which have lectin receptors, from marrow treated with soybean agglutinin (SBA), peanut agglutinin (PNA) and concanavalin A (Con A), suggests the presence of reactive galactosyl and mannosyl residues on the surface of CFU-gm. On the other hand, wheat germ agglutinin (WGA), phytohemagglutinin (PHA) and ulex europaeus agglutinin (UEA), which bind to reactive N-acetylglucosamine, N-acetylgalactosamine and fucose, respectively, did not specifically agglutinate CFU-gm. Thus, reactive groups containing galactosyl and mannosyl structures on the surface of CFU-gm may possibly play a role in the process of cell-to-cell interactions between CFU-gm and marrow stromal cells.  相似文献   

2.
Membrane-associated carbohydrate residues of 3 isolates of Leishmania derived from etiological agents of visceral leishmaniasis (VL), postkala-azar dermal leishmaniasis (PKDL), and cutaneous leishmaniasis (CL), as well as 2 other nonpathogenic insect gut kinetoplastid flagellates, Bodo sp. and Herpetomonas sp., were characterized with the aid of 8 fluorescein-conjugated lectins. Four lectins, concanavalin A, Dolichos biflorus, phytohemagglutinin P, Ricinus communis agglutinin, bound to all kinetoplastid flagellates at different concentrations. All Leishmania promastigotes showed reactions with Ulex agglutinin. Although these lectins were bound to all kinetoplastids, the site and intensity of binding was different. All skin-dwelling Leishmania parasites, viz., Leishmania donovani of PKDL and Leishmania tropica of CL showed unique selectivity toward peanut agglutinin (PNA), soybean agglutinin, and wheatgerm agglutinin (WGA). More interestingly, Herpetomonas showed positive fluorescence with PNA and WGA, whereas Bodo was negative. The results demonstrated that no lectin could distinguish between the pathogenic and nonpathogenic status of kinetoplastid flagellates. Moreover, the antigenic (carbohydrate) profiles of Herpetomonas corresponded more closely to those of L. tropica, whereas Bodo shared some common lectin receptors with L. donovani of VL.  相似文献   

3.
Dissociated epidermal cells derived from the backskin of scaleless chick embryos (stage 34 or 35) form larger agglutinates with wheat germ agglutinin (WGA) than epidermal cells from normal embryonic skin. [3H]Acetyl WGA binding to the scaleless cells is twice as great as to normal epidermal cells. Treatment of these cells with concanavalin A (conA) results in equivalent agglutination of both mutant and normal epidermal cells, whereas neither scaleless nor normal epidermal cells are agglutinated by Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA) or Ulex europeus agglutinin (UEA). This alteration in cell surface carbohydrates may be related to the failure of the scaleless mutant embryonic epidermis to undergo normal morphogenesis.  相似文献   

4.
Various plant lecins were employed in cell agglutination experiments to ascertain the presence of specific saccharides in the surface of B arenarum and L chaquensis spermatozoa. B arenarum spermatozoa were specifically agglutinated with Concanavalin A (Con A), phytohemagglutinin P (PHA-P), and wheat germ agglutinin (WGA), but not with soybean agglutinin (SBA). In contrast, L chaquensis spermatozoa were strongly agglutinated by SBA, WGA, and PHA-P. L chaquensis spermatozoa did not agglutinate with Con A even at high concentrations. Lectinmediated sperm agglutination was inhibited in the presence of specific lectinbinding sugars. Spermatozoa from both species were agglutinated randomly with all lectins suggesting a uniform distribution in the sperm surface of the lectinbinding saccharide ligands. B arenarum sperm agglutination induced by Con A is sensitive to temperature. B arenarum spermatozoa are more agglutinable at 24°C than at 4°C. These results suggest that lectin-binding site mobility is necessary for sperm agglutination.  相似文献   

5.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

7.
M Sarkar  D Mitra    A K Sen 《The Biochemical journal》1987,246(1):157-161
The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin.  相似文献   

8.
Sialic acids as terminal residues of oligosaccharide chains play a crucial role in several cellular recognition events. The presence of sialic acid on promastigotes of Leishmania donovani, the causative organism of Indian visceral leishmaniasis, was demonstrated by fluorimetric high-performance liquid chromatography showing Neu5Ac and, to a minor extent, Neu5,9Ac2. The presence of Neu5Ac was confirmed by GC/MS analysis. Furthermore, binding with sialic acid-binding lectins Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), and Siglecs showed the presence of both alpha2,3- and alpha2,6-linked sialic acids. No endogenous biosynthetic machinery for Neu5Ac could be demonstrated in the parasite. Concomitant western blotting of parasite membranes and culture medium with SNA demonstrated the presence of common sialoglyconjugates (123, 90, and 70 kDa). Similarly, binding of MAA with parasite membrane and culture medium showed three analogous sialoglycans corresponding to 130, 117, and 70 kDa, indicating that alpha2,3- and alpha2,6-linked sialoglycans are adsorbed from the fetal calf serum present in the culture medium. L. donovani promastigotes also reacted with Achatinin-H, a lectin that preferentially identifies 9-O-acetylated sialic acid in alpha2-->6 GalNAc linkage. This determinant was evidenced on parasite cell surfaces by cell agglutination, ELISA, and flow cytometry, where its binding was abolished by pretreatment of cells with a recombinant 9-O-acetylesterase derived from the HE1 region of the influenza C esterase gene. Additionally, binding of CD60b, a 9-O-acetyl GD3-specific monoclonal antibody, corroborated the presence of terminal 9-O-acetylated disialoglycans. Our results indicate that sialic acids (alpha2-->6 and alpha2-->3 linked) and 9-O-acetyl derivatives constitute components of the parasite cell surface.  相似文献   

9.
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.  相似文献   

10.
11.
Ultracentrifugation analyses were performed on lectins under varying conditions of pH, ionic strength and temperature. It has been demonstrated that the phytohemagglutinin from Phaseolus vulgaris, the wheat germ agglutinin and the soybean agglutinin are stable when these parameters are varied, whereas the concanavalin A molecule exhibits a striking reversible dimer-tetramer transition with variation in pH (from 6.0 to 7.2) and temperature (from 4 degrees up to 37 degrees C). It has also been demonstrated that, in agglutination experiments undertaken at different temperatures, cells do eventually aggregate with the first three lectins provided that incubation time is sufficient, whereas the concanavalin-A-induced agglutination was previously found to be temperature-sensitive. These results strongly suggest that the effect of temperature on agglutination by lectins may essentially be due to a structural transition of the lectin itself and nott only to modification of cell surface properties.  相似文献   

12.
Chicken macrophages, obtained by cultivation of blood monocytes, were infected with epimastigote and bloodstream trypomastigote forms of Trypanosoma cruzi strain Y. The percentage of macrophages containing parasites within parasitophorous vacuoles and of flagellates attached to cell surfaces was determined. By incubation of the macrophages at 4 degrees C or in the presence of cytochalasin B it was possible to dissociate the attachment from the internalization phases in the process of infection of macrophages. Both treatments had a marked effect on the internalization of epimastigote and trypomastigote forms. Cytochalasin B treatment and placement of the macrophages at 4 degrees C before infection inhibited this process by about 99 and 96%, respectively. These results suggest that endocytosis is the principal mechanism of internalization of T. cruzi by macrophages. They show also that epimastigote and trypomastigote forms of T. cruzi have a different rate of adhesion to the macrophage surface.  相似文献   

13.
Cell surface carbohydrates in healthy oral mucosa (n = 15), leukoplakias without (n = 48) and with (n = 62) dysplasia, oral papillomas (n = 6) and squamous cell carcinomas (SCCs) (n = 40) were examined using the lectins peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEA I), soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), and Griffonia simplicifolia agglutinin I (GS I-B4). Binding of these lectins in formalin-fixed, paraffin-embedded tissues was demonstrated using either the peroxidase-anti-peroxidase (PAP) method or the avidin-biotin method. Healthy oral epithelia revealed binding sites for these lectins mostly in the suprabasal keratinocytes with occasional PNA binding also in their basal cells. Unlike healthy mucosa, a number of leukoplakias without and with dysplasia revealed receptor sites for UEA I also in their basal layer. Only those keratinocytes undergoing squamoidal differentiation exhibited SBA binding. Staining patterns of UEA I and SBA did not vary significantly between either leukoplakias without and with dysplasia or papillomas and SCCs. Conversely, a reduction or lack of binding sites for PNA (Gal beta 1-3GalNAc), HPA (D-GalNAc alpha) and GS I-B4 (alpha D-Gal) was observed more frequently in leukoplakias with dysplasia and SCCs contrasting their counterparts lacking epithelial dysplasia. Cell surface glycosyl residues play an important role in the regulation of cell proliferation and epithelial growth. Aberrant glycosylation in oral dysplastic leukoplakias and carcinomas leading to the lack of the relevant terminal sugar residues from their cell surface carbohydrates is probably a major reason for the hyper-/disordered proliferation.  相似文献   

14.
We have shown previously that BALB/c mice can be protected against a fatal infection with Leishmania major by adoptive transfer of a T cell line recognizing a protective soluble fraction (fraction 9) of promastigotes. We now describe the isolation and characterization of a T cell clone (9.1-2) that also transfers protective immunity against Leishmania. After Ag or mitogen stimulation, this clone secrets IL-2 and IFN-gamma, but not IL-4 or IL-5. The clone preferentially recognizes L. major fraction 9, and in addition, soluble Ag from Leishmania donovani, Leishmania amazonensis, and Leishmania braziliensis, but not from the related flagellates, Trypanosoma cruzi or Crithidia fasciculata. Besides being contained in fraction 9, the stimulatory Ag is also released from the parasite, because concentrated promastigote culture supernatants induced IFN-gamma production by 9.1-2. By means of T cell immunoblotting, we determined that 9.1-2 recognized a protein with a relative m.w. between 8,000 and 12,000, and within this region is a predominant protein contained in fraction 9 of approximately 10,000 m.w. These data identify a new candidate Ag for immunization against protozoa belonging to the genus Leishmania.  相似文献   

15.
We have investigated the relationship of concanavalin. A binding to the cell surface of normal and transformed cells and the subsequent agglutination of the transformed cells. At room temperature almost no differences could be detected in agglutinin binding between transformed and untransformed cells. At 0°C, however, where endocytosis was negligible, the transformed cells bound three times more agglutinin. However, transformed cells and trypsin-treated normal cells do not agglutinate at 0°C although the amounts of agglutinin bound at 0°C are sufficient to permit agglutination when such cells are shifted up to room temperature. Both transformed and trypsin-treated normal cells show a marked increase in agglutination at 15°C as compared to agglutination at 0°C. From this, as well as the observation that mild glutaraldehyde fixation of the cell surface inhibited agglutination but not agglutinin binding, it was concluded that concanavalin A-mediated cell agglutination requires free movement of the agglutinin receptor sites within the plane of the cell surface.  相似文献   

16.
Abstract. Cell surface carbohydrates in healthy oral mucosa (n = 15), leukoplakias without ( n = 48) and with (n = 62) dysplasia, oral papillomas (n = 6) and squamous cell carcinomas (SCCs) (n – 40) were examined using the lectins peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEA I), soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), and Griffonia simplicifolia agglutinin I (GS I-B4). Binding of these lectins in formalin-fixed, paraffin-embedded tissues was demonstrated using either the peroxidase-anti-peroxidase (PAP) method or the avidin-biotin method. Healthy oral epithelia revealed binding sites for these lectins mostly in the suprabasal keratinocytes with occasional PNA binding also in their basal cells. Unlike healthy mucosa, a number of leukoplakias without and with dysplasia revealed receptor sites for UEA I also in their basal layer. Only those keratinocytes undergoing squamoidal differentiation exhibited SBA binding. Staining patterns of UEA I and SBA did not vary significantly between either leukoplakias without and with dysplasia or papillomas and SCCs. Conversely, a reduction or lack of binding sites for PNA (Galβl-3GalNAc), HPA (D-GalNAcα) and GS I-B4 (αD-Gal) was observed more frequently in leukoplakias with dysplasia and SCCs contrasting their counterparts lacking epithelial dysplasia.
Cell surface glycosyl residues play an important role in the regulation of cell proliferation and epithelial growth. Aberrant glycosylation in oral dysplastic leukoplakias and carcinomas leading to the lack of the relevant terminal sugar residues from their cell surface carbohydrates is probably a major reason for the hyper-/ disordered proliferation.  相似文献   

17.
Intact chromaffin granules from bovine adrenal medulla are shown to have complex carbohydrates on their external (cytoplasmic) surface. This is demonstrated by the facts (1) that granules can be agglutinated by wheat germ agglutinin, and (2) that significant amounts of sialic acid can be removed from the granule surface with neuraminidase. Glycoproteins located in the granule membrane, and not glycolipids, are the molecules that mediate wheat germ agglutinin agglutination. The possible involvement of granule surface carbohydrate in the process of exocytosis is discussed.  相似文献   

18.
19.
The reciprocal cell biological interaction between mesenchymal and epithelial tissue plays a critical role during nephrogenesis. It is unknown to date whether the tissues interact during nephron induction by pure diffusion of substances or whether cellular contacts via gap junctions or focal adhesion molecules are involved. In neonatal rabbit kidney the interface between both tissues shows unique features. It consists of a distinct space, which is filled with specific extracellular matrix consisting of glycosylated proteins such as fibronectin, laminin, collagen, and proteoglycans. In the present experiments we tested by histochemistry whether it is possible to detect additional glycosylated proteins using Soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), Ulex europaeus I agglutinin (UEA I), and Peanut agglutinin (PNA) as molecular markers. All tested lectins showed distinct labeling patterns in embryonic renal tissue. Within the collecting duct ampulla, DBA and UEA I revealed intensive cellular reaction. In contrast, PNA and SBA reacted at the basal aspect of the collecting duct ampulla tip in addition to a cellular reaction. To identify the individual molecules labeled by the lectins, embryonic tissue was fractionated and separated by electrophoretic methods. For the first time, we were able to show by two-dimensional electrophoresis and subsequent western blot experiments that lectins bind to a series of individual protein spots, which have not been identified to date.  相似文献   

20.
Human red blood cells (RBCs), transformed by incubation with the amphiphatic compound lysolecithin from their normal discocyte shape into echinocytes, have increased rates of agglutination in the presence of either poly- -lysine (PLL) or soybean agglutinin (SBA). Removal of lysolecithin by washing caused a reversal of shape back to the discocyte configuration and a lowering of agglutination rates. Methochlorpromazine, another amphiphatic echinocytogenic substance produced a similar increase in agglutination rates, suggesting that increased agglutinability may be a general property of echinocytes. Lysolecithin treatment of RBCs caused a decrease in the binding of cationized ferritin (CF) particles/μm2 of RBC surface. The decrease in CF binding is due to a rearrangement of negative charge bearing molecules on the RBC surface rather than shedding of charged groups. These observations support the hypothesis that integral membrane proteins which bear negative charges and receptors are associated with a cytoskeleton within the red cell. Alterations in cell shape which result in distortion of the cytoskeleton may cause a redistribution of integral membrane proteins which bear charged groups at the RBC surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号