首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformations that proteins adopt in solution are a function of both their primary structure and surrounding aqueous environment. Recent experimental and computational work on small peptides, e.g., polyK, polyE, and polyR, have highlighted an interesting and unusual behavior in the presence of aqueous ions such as ClO4, Na+, and K+. Notwithstanding the aforementioned studies, as of this writing, the nature of the driving force induced by the presence of ions and its role on the conformational stability of peptides remains only partially understood. Molecular-dynamics simulations have been performed on the heptapeptide AEAAAEA in NaCl and KCl solutions at concentrations of 0.5, 1.0, and 2.0 M. Metadynamics in conjunction with a three-dimensional model reaction coordinate was used to sample the conformational space of the peptide. All simulations were run for 2 μs. Free-energy landscapes were computed over the model reaction coordinate for the peptide in each saline assay as well as in the absence of ions. Circular dichroism spectra were also calculated from each trajectory. In the presence of Na+ and K+ ions, no increase in helicity is observed with respect to the conformation in pure water.  相似文献   

2.
A large amount of experimental data on the characteristics of the cardiac Na+/K+ pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na+/K+ pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na+/K+ pump current (INaK), including the dependency on the concentrations of Na+ and K+, the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-INaK relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na+- and K+-binding steps, the experimental voltage-INaK relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K+ binding was supported. Re-evaluation of charge movements accompanying Na+ and K+ translocations gave a reasonable number for the site density of the Na+/K+ pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism.  相似文献   

3.
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+.  相似文献   

4.
The “paranoiac” mutants of Paramecium aurelia show prolonged backward swimming in solutions containing Na+, unlike wild-type paramecia, which jerk back and forth in Na+ solutions. The paranoiac mutants in Na+ solutions also show large losses of cellular K+ and large influxes of Na+. Three different paranoiac mutants all show similar defects in ion regulation but to different degrees. Wild-type Paramecium, in contrast, shows no Na+-dependent loss of cellular K+ and a much smaller Na+ influx. In K+-containing solutions, there is no difference between wild-type and paranoiac paramecia with respect to their cellular K+ content.The Na+ influx, the K+ loss, and the duration of backward swimming are all proportional to the extracellular Na+ concentration. Electrophysiologically, the backward swimming of the paranoiac mutants corresponds to a prolonged depolarization of the membrane potential, while the backward jerks of wild-type Paramecium correspond to a series of transient depolarizations. We propose that the large Na+ influxes and the large K+ effluxes in paranoiacs occur during the periods of backward swimming, while the membrane is depolarized.  相似文献   

5.
6.
Conformational aspects of the complexation of bis(cyclic tetrapeptide), S,S′-bis[cyclo(Gly-l-hemiCys-Sar-l-Pro)] (BCGCSP) with a metal cation were studied. Binding constants of BCGCSP with several cations were determined in aqueous solution, using circular dichroism (c.d.) titration curves. The values were compared with those of two mono-cyclic tetrapeptides, cyclo[Gly-l-Cys[Bzl(OMe)]-Sar-l-Pro] and cyclo(Sar-l-Pro-Sar-l-Pro). When complexing with alkali metal cations, BCGCSP exhibits selective affinity for Rb+ in preference to Li+, Na+, and K+. Complexing with alkaline earth metal cations, the peptide binds Ba2+ selectively. In addition, BCGCSP shows a marked Ba2+/Ca2+ selectively compared with the other three cyclic peptides. In order to explain these characteristics, a pseudo-inclusion complex with a castanet type structure was proposed as a model of the bis(peptide)—cation complex. The c.d. band ascribed to disulphide (SS) bond transition, showed a red shift upon complex formation. From this observation, it is suggested that conformational fitting of bis(peptide) takes place by changing the geometry of the peptide backbone and covalent CSSC bridge upon complexation with a metal cation.  相似文献   

7.
The formation pathway of tetramolecular G-quadruplexes   总被引:3,自引:3,他引:0       下载免费PDF全文
Oligonucleotides containing guanosine stretches associate into tetrameric structures stabilized by monovalent ions. In order to describe the sequence of reactions leading to association of four identical strands, we measured by NMR the formation and dissociation rates of (TGnT)4 quadruplexes (n = 3–6), their dissociation constants and the reaction orders for quadruplex formation. The quadruplex formation rates increase with the salt concentration but weakly depend on the nature (K+, Na+ or Li+) of the counter ions. The activation energies for quadruplex formation are negative. The quadruplex lifetimes strongly increase with the G-tract length and are much more longer in K+ solution than in Na+ or Li+ solutions. The reaction order for quadruplex formation is 3 in 0.125 M KCl and 4 in LiCl solutions. The kinetics measurements suggest that quadruplex formation proceeds step by step via sequential strand association into duplex and triplex intermediate species. Triplex formation is rate limiting in 0.125 M KCl solution. In LiCl, each step of the association process depends on the strand concentration. Parallel reactions to formation of the fully matched canonical quadruplex may result in kinetically trapped mismatched quadruplexes making the canonical quadruplex practically inaccessible in particular at low temperature in KCl solution.  相似文献   

8.
Two-pore domain K+ channels (K2P) mediate background K+ conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K+ channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pHo) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pHo affects these acid-sensitive K2P channels is not well understood. Here we show that in Na+-based bath solutions with physiological K+ gradients, lowered pHo largely shifts the reversal potential of TWIK-1, TASK-1, and TASK-3 K+ channels, which are heterologously expressed in Chinese hamster ovary cells, into the depolarizing direction and significantly increases their Na+ to K+ relative permeability. Low pHo-induced inhibitions in these acid-sensitive K2P channels are more profound in Na+-based bath solutions than in channel-impermeable N-methyl-d-glucamine-based bath solutions, consistent with increases in the Na+ to K+ relative permeability and decreases in electrochemical driving forces of outward K+ currents of the channels. These findings indicate that TWIK-1, TASK-1, and TASK-3 K+ channels change ion selectivity in response to lowered pHo, provide insights on the understanding of how extracellular acidification modulates acid-sensitive K2P channels, and imply that these acid-sensitive K2P channels may regulate cellular function with dynamic changes in their ion selectivity.  相似文献   

9.
To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.  相似文献   

10.
Using radio-tracers, we measured Na+ and K+ accumulation in roots and transport to shoots in Zea mays (cv Pioneer 3906) as a function of NaCl concentration and O2 partial pressure in the nutrient solution. Under fully aerobic conditions, roots partially excluded Na+ from the shoots over a wide range of NaCl concentration (0.2-200 millimolar). With root anoxia, the exclusion mechanism broke down so that much greater amounts of Na+ reached the shoots, with simultaneous inhibition of K+ transport. The ratio Na+/K+ entering the shoot consequently increased 90 to 200 times. Increases in Na+ transport were first detected when the O2 partial pressure was reduced from ambient (21% v/v) to 15%, whereas K+ transport was not inhibited until O2 concentrations were <5%. Since soil O2 deficiency can often accompany high salinity in irrigation agriculture, failure of the Na+ exclusion mechanism may be a contributory factor in salinity damage of salt-sensitive glycophytes.  相似文献   

11.
Hiatt AJ 《Plant physiology》1969,44(11):1528-1532
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated for 24 hr in solutions containing constant total concentrations of KCl and NaCl but in which the mole fractions of K and Na were varied in replacement series. In solutions containing 1, 10, or 50 mm concentrations of K+ plus Na+, total cation accumulation was dependent upon the total salt concentration but was relatively independent of the mole fractions of K+ and Na+. These results imply that accumulation of K+ and Na+ was limited by a common factor. In solutions containing 0.01 mm K+ plus Na+ there was a strong preference for K+ over Na+ and the sum of K+ and Na+ accumulation increased with increasing K+ concentration.  相似文献   

12.
The TRK-HKT family of K+ transporters mediates K+ and Na+ uptake in fungi and plants. In this study, we have investigated the molecular mechanism involved in the movement of alkali cations through the TRK1 transporter of Saccharomyces cerevisiae. The model that best explains the activity of ScTRK1 is a cotransport of two K+ or Rb+, both of which bind the two binding sites of ScTRK1 with very high affinities in K+-starved cells. Na+ can be transported in the same way but it exhibits a much lower affinity for the second binding site. Therefore, only at critical concentration ratios between K+ and Na+, or Rb+ and Na+, the transporter takes up Na+ together with K+ or Rb+. Mutation analyses suggest that the two binding sites are located in the P fragment of the first MPM motif of the transporter, and that Gln90 is involved in these binding sites. ScTRK1 can be in two states, medium or high affinity, and we have found that Leu949 is involved in the oscillation of the transporter between these two states. ScTRK1 mediates active K+ uptake. This is not Na+-coupled and direct coupling of ScTRK1 to a source of chemical energy seems more probable than K+-H+ cotransport.  相似文献   

13.
In order to clarify whether or not the electronegative olfactory mucosal potentials (EOG) are generator potentials, the effects of changed ionic enviroment were studied. The EOG decreased in amplitude and in some cases nearly or completely disappeared, when Na+ in the bathing Ringer solution was replaced by sucrose, Li+, choline+, tetraethylammonium+ (TEA), or hydrazine. In the K+-free Ringer solution, the negative EOG's initially increased and then decreased in amplitude. In Ringer's solution with increased K+, the negative EOG's increased in amplitude. When K+ was increased in exchange for Na+ in Ringer's solution, the negative EOG's decreased, disappeared, and then reversed their polarity (Fig. 6). Next, when the K+ was replaced by equimolar sucrose, Li+, choline+, TEA+, hydrazine, or Na+, the reversed potentials recovered completely only in Na+-Ringer's solution, but never in the other solutions. Thus, the essential role of Na+ and K+ in the negative EOG's was demonstrated. Ba++ was found to depress selectively the electropositive EOG, but it hardly decreased and never increased the negative EOG. Hence, it is concluded that Ba++ interferes only with Cl- influx, and that the negative EOG's are elicited by an increase in permeability of the olfactory receptive membrane to Na+ and K+, but not to Cl-. From the ionic mechanism it is inferred that the negative EOG's are in most cases composites of generator and positive potentials.  相似文献   

14.
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions. In addition, it appears that the effective block of ion conduction produced by the mutation W434F in the pore region may be associated with permanent C-type inactivation of W434F channels. These conclusions predict that permanently C-type inactivated W434F channels would also show Na+ and Li+ currents (in K+-free solutions) with kinetics similar to those seen in C-type-inactivated Shaker channels. This paper confirms that prediction and demonstrates that activation and deactivation parameters for this mutant can be obtained from macroscopic ionic current measurements. We also show that the prolonged Na+ tail currents typical of C-type inactivated channels involve an equivalent prolongation of the return of gating charge, thus demonstrating that the kinetics of gating charge return in W434F channels can be markedly altered by changes in ionic conditions.  相似文献   

15.
Wrona AF  Epstein E 《Plant physiology》1985,79(4):1064-1067
Excised roots of the tomato species, Lycopersicon esculentum Mill. cv Walter (the commercial species) and of Lycopersicon cheesmanii ssp. minor (Hook.) C.H. Mull. (a wild species from the Galapagos Islands), were used in comparative studies of their absorption of K+ and Na+. Uptake of 86Rb-labeled K+ and 22Na-labeled Na+ by excised roots of `Walter' and L. cheesmanii varied as a function of genotype and tissue pretreatment with or without K+. Excised roots of `Walter' consistently absorbed more 86Rb-labeled K+ than those of L. cheesmanii. Absorption of K+ from solutions ranging from 0.01 to 0.2 millimolar KCl showed saturation kinetics in both K+-pretreated and K+-depleted roots of `Walter,' and for K+-depleted roots of L. cheesmanii. K+-pretreated roots of L. cheesmanii had exceedingly low rates of K+ uptake with strikingly different, linear kinetics. Pretreatment with K+ caused a decrease in rates of K+ uptake in both genotypes. Potassium depleted roots of L. cheesmanii absorbed Na+ at a greater rate than those of `Walter,' whereas K+-pretreated roots of `Walter' absorbed Na+ at a greater rate than those of L. cheesmanii. The results confirm and extend previous conclusions to the effect that closely related genotypes may exhibit widely different responses to the two alkali cations, K+ and Na+.  相似文献   

16.
Based on a proposed solution conformation of the Ca2+ ion complex of the repeat hexapeptide of elastin, l-Val-l-Ala-l-Pro-Gly-l-Val-Gly, it is possible to modify the molecule making it more lipophilic for lipid bilayer permeation while retaining its complexation features. Therefore the two peptides, For-MeVal-Ala-Pro-Sar-Pro-Sar-OMe and For-MeVal-Ala-Pro-Sar-Pro-Sar-OH, were synthesized and evaluated for lipid bilayer activity and cation binding (For, N-formyl; Me, N-methyl; Sar, N-methyl glycine). Both peptides bound Ca2+ preferentially but did not exhibit the properties of a Ca2+ carrier. They were however active as K+ carriers although K+ ion titration curves showed a much lower affinity for K+ than for Ca2+. The addition of Ca2+ or Mg2+ to the bilayer system inhibited the peptide K+ carrier activity. Three possible explanations of this interesting Ca2+ inhibition of carrier activity are irreversible complexation of Ca2+, mixed ligand complex formation involving Ca2+, lipid and peptide, and impermeability of the lipid layer when peptide is complexed with a divalent cation.  相似文献   

17.
Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium–potassium pump (Na+/K+-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na+/K+-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na+/K+-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na+/K+-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na+/K+-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na+/K+-ATPase, but had systematically reduced effects on Na+/K+-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na+/K+-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects.  相似文献   

18.
Irradiation of G-quadruplex forming human telomeric DNA with ultraviolet B (UVB) light results in the formation of anti cyclobutane pyrimidine dimers (CPDs) between loop 1 and loop 3 in the presence of potassium ions but not sodium ions. This was unexpected because the sequences involved favor the nonphotoreactive hybrid conformations in K+ solution, whereas a potentially photoreactive basket conformation is favored in Na+ solution. To account for these contradictory results, it was proposed that the loops are too far apart in the basket conformation in Na+ solution but close enough in a two G-tetrad basket-like form 3 conformation that can form in K+ solution. In the current study, Na+ was still found to inhibit anti CPD formation in sequences designed to stabilize the form 3 conformation. Furthermore, anti CPD formation in K+ solution was slower for the sequence previously shown to exist primarily in the proposed photoreactive form 3 conformation than the sequence shown to exist primarily in a nonphotoreactive hybrid conformation. These results suggest that the form 3 conformation is not the principal photoreactive conformation, and that G-quadruplexes in K+ solution are dynamic and able to access photoreactive conformations more easily than in Na+ solution.  相似文献   

19.
Glass microelectrodes filled with 3 molar KCl are widely used to measure intracellular potentials and it is usual to try to minimize their electrolyte loss. In these experiments we have used the ionic leak of our microelectrodes, filled with various salt solutions, to introduce a given ion into the red beet vacuole. This allowed us to show that NO3 ions reduce the magnitude of the current spectral density while they do not change the resistance of the tonoplast. This is true when NO3 is either added to the external medium or used as the microelectrode filling solution. This can be interpreted by a NO3 effect on the vacuolar side of the tonoplast, resulting in an inhibition of the ion transporting ATPase. Replacing K+ by Na+ ions in the medium has no effect on tonoplast resistance (Rs). On the contrary, when ions leaking from the microelectrode are H+, Li+ or K+, Rs is close to 4 kilohm square centimeter, whereas Rs is of the order of 30KΩ square centimeter when Na+ are the leaking ions. We also found a possible correlation between the presence of a Lorentzian in the current spectral density (cut-off frequency = 2 hertz) and a Cl efflux from the vacuole. This could be explained by the existence of Cl channels on the tonoplast.  相似文献   

20.
Adult Glossina morsitans fed on aqueous salt solutions containing phagostimulant ATP in an in vitro feeding system gave an optimal feeding response only over a narrow pH range equivalent to that of vertebrate blood. There was much less discrimination on the basis of molar concentration.The rate and extent of water excretion by the fly was found to depend on the concentration of Na+ ions in the food medium: an active transport mechanism is indicated which enables water to pass from the meal through the anterior midgut wall and into the haemocoele. A favourable osmotic gradient assisted water transport in the presence of Na+ ions: the system could not operate efficiently in the presence of Na+ ions if the osmotic pressure of the food medium was higher than that of vertebrate blood, nor could it operate efficiently in any solution lacking Na+ ions.Normal transfer of a meal from the crop to the anterior midgut occurred only when the food medium was isotonic with vertebrate blood or in the presence of Na+ ions if hypotonic. Normal transfer of isotonic solutions was prevented in the presence of excess K+ ions, and hypertonic solutions were not transferred normally even in the presence of Na+ ions. Thus the rate of water excretion was reduced.Tsetse flies fed on blood in an in vitro feeding system excreted water at a significantly lower rate than flies fed on a living animal. Evidence suggests that this is due to a combined effect of changes in viscosity, effective ionic composition, and osmotic pressure, upon the normal rate and extent of food uptake and manipulation of the meal prior to digestion. The implications of this are discussed in terms of future developments of in vitro feeding techniques for haematophagous insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号