首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polar transport of auxin has been identified as a central element of pattern formation. To address the underlying cellular mechanisms, we use the tobacco cell line (Nicotiana tabacum L. cv. Bright Yellow 2; BY-2) as model. We showed previously that cell divisions within a cell file are synchronized by polar auxin flow, linked to the organization of actin filaments (AF) which, in turn, is modified via actin-binding proteins (ABPs). From a preparatory study for disturbed division synchrony in cell lines overexpressing different ABPs, we identified the actin depolymerizing factor 2 (ADF2). A cell line overexpressing GFP-NtADF2 was specifically affected in division synchrony. The cell division pattern could be rescued by addition of Phosphatidylinositol 4,5-bisphosphate (PIP2) or by phalloidin. These observations allow to draw first conclusions on the pathway linking auxin signalling via actin reorganization to synchronized cell division placing the regulation of cortical actin turnover by ADF2 into the focus.  相似文献   

2.
We investigated the involvement of the actomyosin network in the early events of the gravitropic response of cut snapdragon (Antirrhinum majus L.) spikes. The effects of the actin-modulating drug, cytochalasin D (CD) and/or the myosin inhibitor, 2,3-butanedione-2-monoxime (BDM) on amyloplast displacement, lateral auxin transport and consequently on stem bending were examined. The inhibitory effect on cytoskeleton integrity was studied by using indirect immunofluorescence double-labeling of actin and myosin. Our results demonstrate that no organizational changes in actin filaments occurred in cortical and endodermal cells of the stem bending zone during reorientation. These results suggest that actin depolymerization is not required for amyloplast sedimentation. Unlike the chloroplasts in the cortex, the amyloplasts in the endodermis were surrounded by actin and myosin, indicating that amyloplasts may be attached to the actin filaments via the motor protein, myosin. This suggests the involvement of myosin as part of the actomyosin complex in amyloplast movement in vertical as well as in reoriented stems. This suggestion was supported by the findings showing that: (a) BDM or CD disrupted the normal organization of actin either by altering characteristic distribution patterns of myosin-like protein in the cortex (BDM), or by causing actin fragmentation (CD); (b) both compounds inhibited the gravity-induced amyloplast displacement in the endodermis. Additionally, these compounds also inhibited lateral auxin transport across the stem and stem gravitropic bending. Our study suggests that during stem reorientation amyloplasts possibly remain attached to the actin filaments, using myosin as a motor protein. Thus, gravisensing and early transduction events in the gravitropic response of snapdragon spikes, manifested by amyloplast displacement and lateral auxin transport, are mediated by the actomyosin complex.  相似文献   

3.
Flexibility of myosin molecule was studied by in vitro motility assay in terms of the direction of actin movement. Electron microscopy showed that HMM scattered on a nitrocellulose surface can bind actin filaments and form arrowhead-like patterns. Actin filaments can move in both directions on tracks of HMM made on a nitrocellulose surface. Further, actin filaments can move bidirectionally along native thick filaments over their central bare zone. These observations indicate that there is considerable flexibility in a myosin molecule and that the direction of the movement is determined by the polarity of actin filaments.  相似文献   

4.
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.  相似文献   

5.
Here we examine peroxisomes in living plant cells using transgenic Arabidopsis thaliana plants expressing the green fluorescent protein (GFP) fused to the peroxisome targeting signal 1 (PTS1). Using time-lapse laser scanning confocal microscopy we find that plant peroxisomes exhibit fast directional movement with peak velocities approaching 10 microm s(-1). Unlike mammalian peroxisomes which move on microtubules, plant peroxisome movement is dependent on actin microfilaments and myosin motors, since it is blocked by treatment with latrunculin B and butanedione monoxime, respectively. In contrast, microtubule-disrupting drugs have no effect on peroxisome streaming. Peroxisomes were further shown to associate with the actin cytoskeleton by the simultaneous visualization of actin filaments and peroxisomes in living cells using GFP-talin and GFP-PTS1 fusion proteins, respectively. In addition, peroxisome budding was observed, suggesting a possible mechanism of plant peroxisome proliferation. The strong signal associated with the GFP-PTS1 marker also allowed us to survey cytoplasmic streaming in different cell types. Peroxisome movement is most intense in elongated cells and those involved in long distance transport, suggesting that higher plants use cytoplasmic streaming to help transport vesicles and organelles over long distances.  相似文献   

6.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

7.
The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.  相似文献   

8.
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.  相似文献   

9.
The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.  相似文献   

10.
We have used two in vitro motility assays to study the relative movement of actin and myosin from turkey gizzards (smooth muscle) and human platelets. In the Nitella-based in vitro motility assay, myosin-coated polymer beads move over a fixed substratum of actin bundles derived from dissection of the alga, Nitella, whereas in the sliding actin filament assay fluorescently labeled actin filaments slide over myosin molecules adhered to a glass surface. Both assay systems yielded similar relative velocities using smooth muscle myosin and actin under our standard conditions. We have studied the effects of ATP, ionic strength, magnesium, and tropomyosin on the velocity and found that with the exception of the dependence on MgCl2, the two assays gave very similar results. Calcium over a concentration of pCa 8 to 4 had no effect on the velocity of actin filaments. Phosphorylated smooth muscle myosin propelled filaments of smooth muscle and skeletal muscle actin at the same rate. Phosphorylated smooth muscle and cytoplasmic myosin monomers also moved actin filaments, demonstrating that filament formation is not required for movement.  相似文献   

11.
Neurodegenerative diseases may result in part from defects in motor‐driven vesicle transport in neuronal cells. Myosin‐V, an actin‐based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin‐V interacts with the microtubule‐based motor, kinesin, to form a ‘hetero‐motor’ complex on vesicles. The complex of these two motors, one microtubule‐based and the other actin‐based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin‐V to kinesin and to neuronal vesicles, we used a GST‐tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin‐V presumably by binding to vesicles and competing away the native myosin‐V motors. The GST‐MyoV‐tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin‐V. These data show that the headless myosin‐V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin‐V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

12.
Although class IX myosins are single-headed, they demonstrate characteristics of processive movement along actin filaments. Double-headed myosins that move processively along actin filaments achieve this by successive binding of the two heads in a hand-over-hand mechanism. This mechanism, obviously, cannot operate in single-headed myosins. However, it has been proposed that a long class IX specific insertion in the myosin head domain at loop2 acts as an F-actin tether, allowing for single-headed processive movement. Here, we tested this proposal directly by analysing the movement of deletion constructs of the class IX myosin from Caenorhabditis elegans (Myo IX). Deletion of the large basic loop2 insertion led to a loss of processive behaviour, while deletion of the N-terminal head extension, a second unique domain of class IX myosins, did not influence the motility of Myo IX. The processive behaviour of Myo IX is also abolished with increasing salt concentrations. These observations directly demonstrate that the insertion located in loop2 acts as an electrostatic actin tether during movement of Myo IX along the actin track.  相似文献   

13.
Actin filament dynamics are crucial in cell motility. Actin filaments, and their bundles, networks, and gels assemble and disassemble spontaneously according to thermodynamic rules. These dynamically changing structures of actin are harnessed for some of its functions in cells. The actin systems respond to external signals, forces, or environments by biasing the fluctuation of actin assembly structures. In this study, dynamic conformation of actin molecules was studied by monitoring conformational dynamics of actin molecules at the single molecule level in real time. Actin conformation spontaneously fluctuates between multiple conformational states. Regarding myosin motility, the dynamic equilibrium of actin conformation was interpreted as between states that activates and inhibits the motility. The binding of myosin to actin filaments activates myosin motility by shifting the conformational fluctuation of actin towards the state that activates the motility. Thus, the activation mechanism based on thermal fluctuation is suggested at molecular level as well as at cellular level.  相似文献   

14.
We previously reported setting up an in vitro system for the observation of actin filament sliding along myosin filaments. The system involved a minute amount of fluorescently labelled F-actin, and its movement was monitored by fluorescence microscopy. Here, we report observations of the Ca2+-dependent movement of F-actin complex with tropomyosin plus troponin (regulated actin) added to the movement system in place of pure F-actin. In a wide range of pCa (-log10[Ca2+]) between 3 and 5.5 at 30 degrees C, regulated actin filaments moved rapidly, and the average velocity depended little on the Ca2+ concentration (about 7.5 microns/s). However, when the Ca2+ concentration was decreased to pCa = 5.8 or lower, the filaments suddenly stopped moving. In striking contrast to these observations, unregulated actin moved rapidly within the whole pCa range examined, the average velocity (about 7.5 microns/s) being essentially Ca2+-independent. These observations indicate that (1) tropomyosin-troponin actually gave Ca2+-sensitivity to F-actin, and (2) the movement system was regulated by Ca2+ in an on-off fashion within a narrow range of Ca2+ concentration. In a pCa range between 5.8 and 6.0, regulated actin filaments did not exhibit thermal motion; instead, they had fixed positions in the specimen, possibly because they remained associated with myosin filaments in the background, without sliding past each other. Although regulated actin moved fast in the presence of 1 mM-CaCl2 (pCa = 3) at 30 degrees C, it became entirely non-motile as the temperature was decreased to 25 degrees C or lower. Such a sharp movement/temperature relation was never found for unregulated actin. We assayed regulated actin-activated myosin ATPase in the same conditions as used for microscopy, and found that the ATPase activity depended both on pCa and on the temperature considerably less than the movement of regulated actin. The results suggest that the sliding velocity in the in vitro system would not be proportional to the rate of actin-activated ATPase.  相似文献   

15.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ∼ 60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by ∼ 15% or ∼ 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ∼ 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.  相似文献   

16.
The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin.  相似文献   

17.
A protein purified from cytoskeletal fractions of Dictyostelium discoideum proved to be a member of the fimbrin/plastin family of actin-bundling proteins. Like other family members, this Ca(2+)-inhibited 67-kDa protein contains two EF hands followed by two actin-binding sites of the alpha-actinin/beta-spectrin type. Dd plastin interacted selectively with actin isoforms: it bound to D. discoideum actin and to beta/gamma-actin from bovine spleen but not to alpha-actin from rabbit skeletal muscle. Immunofluorescence labeling of growth phase cells showed accumulation of Dd plastin in cortical structures associated with cell surface extensions. In the elongated, streaming cells of the early aggregation stage, Dd plastin was enriched in the front regions. To examine how the bundled actin filaments behave in myosin II-driven motility, complexes of F-actin and Dd plastin were bound to immobilized heavy meromyosin, and motility was started by photoactivating caged ATP. Actin filaments were immediately propelled out of bundles or even larger aggregates and moved on the myosin as separate filaments. This result shows that myosin can disperse an actin network when it acts as a motor and sheds light on the dynamics of protein-protein interactions in the cortex of a motile cell where myosin II and Dd plastin are simultaneously present.  相似文献   

18.
Kakiuchi Y  Gàlis I  Tamogami S  Wabiko H 《Planta》2006,223(2):237-247
The plant-tumorigenic 6b (AK-6b) gene of Agrobacterium tumefaciens strain AKE10 induces morphological alterations to tobacco plants, Nicotiana tabacum. To investigate the molecular mechanisms underlying these processes, we generated transgenic tobacco harboring the AK-6b gene under the control of a dexamethazone-inducible promoter. Upon induction, transgenic tobacco seedlings exhibited distinct classes of aberrant morphologies, most notably adventitious outgrowths and stunted epicotyls. Histological analysis revealed massive proliferation and altered venation in the newly established outgrowths. Prominent vascular development suggested that auxin metabolism or signaling had been altered. Indeed, basipetal auxin transport in the hypocotyls of the transgenic seedlings was reduced by 50–80%, whereas intracellular auxin contents were only slightly reduced. Analysis of cell extracts by HPLC revealed a large accumulation of phenolic compounds, including the flavonoid kaempferol-3-rutinoside, in transgenic plants compared with wild-type seedlings. As some naturally occurring flavonoids have been shown to affect auxin transport, we suggest that the AK-6b gene expression impairs auxin transport via modulation of phenylpropanoid metabolism, and ultimately results in the observed morphological alterations. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
We examined whether actin filaments bound to positively charged liposomes could interact with myosin molecules and induce liposome motility. When liposomes were constructed from the mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP), actin filaments bound to the liposomes. The actin-bound liposomes exhibited movement on myosin molecules in the presence of adenosine-5'-triphosphate (ATP). The displacement was almost linearly increased with time and the behavior differed from that of Brownian motion. Furthermore, the presence of 30% DOTAP in liposomes was most effective for transport. These data show that the actomyosin system was successfully integrated into the liposomes and possesses the ability to actively transport useful agents enclosed within the liposomes.  相似文献   

20.
Strategic control of mitochondrial movements and cellular distribution is essential for correct cell function and survival. However, despite being a vital process, mitochondrial movement in plant cells is a poorly documented phenomenon. To investigate the roles of actin filaments and microtubules on mitochondrial movements, Picea wilsonii pollen tubes were treated with two microtubule-disrupting drugs, two actin-disrupting drugs and a myosin inhibitor. Following these treatments, mitochondrial movements were characterized by multiangle evanescent wave microscopy and laser-scanning confocal microscopy. The results showed that individual mitochondria underwent three classes of linear movement: high-speed movement (instantaneous velocities >5.0 μm/s), low-speed movement (instantaneous velocities <5.0 μm/s) and variable-speed movement (instantaneous velocities ranging from 0.16 to 10.35 μm/s). 10 nM latrunculin B induced fragmentation of actin filaments and completely inhibited mitochondrial vectorial movement. Jasplakinolide treatment induced a 28% reduction in chondriome motility, and dramatically inhibition of high-speed and variable-speed movements. Treatment with 2,3-butanedione 2-monoxime caused a 61% reduction of chondriome motility, and the complete inhibition of high-speed and low-speed movements. In contrast to actin-disrupting drugs, microtubule-disrupting drugs caused mild effects on mitochondrial movement. Taxol increased the speed of mitochondrial movement in cortical cytoplasm. Oryzalin induced curved mitochondrial trajectories with similar velocities as in the control pollen tubes. These results suggest that mitochondrial movement at low speeds in pollen tubes is driven by myosin, while high-speed and variable-speed movements are powered both by actin filament dynamics and myosin. In addition, microtubule dynamics has profound effects on mitochondrial velocity, trajectory and positioning via its role in directing the arrangement of actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号