首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of visual and esthetic training has many facets, among which the psychological are obviously not the least important. The results of long years of studying the psychology of the child (2) lead to the conclusion that:

Human consciousness and the mechanisms of conscious control of human actions represe it a hierarchical system, like a building constructed of many superimposed psychophysiological levels, of many floors rising above one another. Somewhere in the basement are the prepsychological instinctive processes of receiving and using unconditioned reflex signals; the lower floors form the elementary sensations and implement the elementary types of individually discovered sensorimotor coordinations; the next floor is where the synthetic perceptions of space and time are formed along with the mechanisms for controlling locomotion and object manipulation; above them is the floor housing visual thinking and the processes for regulating play and productive activities; and, finally, above all these is the floor of symbolic, abstract, logical operations and the most complex instances of control exerted by the most complex information- seeking and labor activities. It should be emphasized that in its developed form this hierarchical system operates as a single entity, and the control of complex operations requires agreement between the operations of the psychophysiological mechanisms located at all these levels or floors. Each age level in the child's development erects the next floor of the overall psychophysiological building, and our task is mainly to build it in the best possible way, without senseless haste and taking heed not to erect the next floor before the one below is finished. (4)  相似文献   

2.

Background

Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements.

Methodology/Principal Findings

The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency.

Conclusions/Significance

We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.  相似文献   

3.
4.
5.
6.
目的:用计算机控制检测研究视力时间阈值.方法:用pascal语言程序设计视标.视标的大小、显示程序和持续时间由计算机控制.受试者从距离显示器5m处看视标.采用阶梯法测试不同视力受试者的视力时间阈值.结果:检测到约为毫秒级的视力时间阈值.视力1.0组的视力时间阈值平均约为28.10msec,视力1.2组的视力时间阈值平均约为27.90msec,视力1.5组的视力时间阈值平均约为27.80msec.结论:视力与视力时间阈值不成正比,视力好的个体其视力时间阈值不一定短.  相似文献   

7.
8.
9.
10.
11.
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.  相似文献   

12.
13.
14.
15.

Background

Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues.

Methodology/Principal Findings

Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d′). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery.

Conclusions/Significance

Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.  相似文献   

16.
Visual Adaptation in the Retina of the Skate   总被引:21,自引:16,他引:5  
The electroretinogram (ERG) and single-unit ganglion cell activity were recorded from the eyecup of the skate (Raja erinacea and R. oscellata), and the adaptation properties of both types of response compared with in situ rhodopsin measurements obtained by fundus reflectometry. Under all conditions tested, the b-wave of the ERG and the ganglion cell discharge showed identical adaptation properties. For example, after flash adaptation that bleached 80% of the rhodopsin, neither ganglion cell nor b-wave activity could be elicited for 10–15 min. Following this unresponsive period, thresholds fell rapidly; by 20 min after the flash, sensitivity was within 3 log units of the dark-adapted level. Further recovery of threshold was slow, requiring an additional 70–90 min to reach absolute threshold. Measurements of rhodopsin levels showed a close correlation with the slow recovery of threshold that occurred between 20 and 120 min of dark adaptation; there is a linear relation between rhodopsin concentration and log threshold. Other experiments dealt with the initial unresponsive period induced by light adaptation. The duration of this unresponsive period depended on the brightness of the adapting field; with bright backgrounds, suppression of retinal activity lasted 20–25 min, but sensitivity subsequently returned and thresholds fell to a steady-state value. At all background levels tested, increment thresholds were linearly related to background luminance.  相似文献   

17.
Acetylcholine (ACh) is secreted from cholinergic neurons in the basal forebrain to regions throughout the cerebral cortex, including the primary visual cortex (V1), and influences neuronal activities across all six layers via a form of diffuse extrasynaptic modulation termed volume transmission. To understand this effect in V1, we performed extracellular multi-point recordings of neuronal responses to drifting sinusoidal grating stimuli from the cortical layers of V1 in anesthetized rats and examined the modulatory effects of topically administered ACh. ACh facilitated or suppressed the visual responses of individual cells with a laminar bias: response suppression prevailed in layers 2/3, whereas response facilitation prevailed in layer 5. ACh effects on the stimulus contrast-response function showed that ACh changes the response gain upward or downward in facilitated or suppressed cells, respectively. Next, ACh effects on the signal-to-noise (S/N) ratio and the grating-phase information were tested. The grating-phase information was calculated as the F1/F0 ratio, which represents the amount of temporal response modulation at the fundamental frequency (F1) of a drifting grating relative to the mean evoked response (F0). In facilitated cells, ACh improved the S/N ratio, while in suppressed cells it enhanced the F1/F0 ratio without any concurrent reduction in the S/N ratio. These effects were predominantly observed in regular-spiking cells, but not in fast-spiking cells. Electrophysiological and histological findings suggest that ACh promotes the signaling of grating-phase information to higher-order areas by a suppressive effect on supragranular layers and enhances feedback signals with a high S/N ratio to subcortical areas by a facilitatory effect on infragranular layers. Thus, ACh distinctly and finely controls visual information processing in a manner that is specific for the modulation and cell type and is also laminar dependent.  相似文献   

18.
《Current biology : CB》2014,24(6):587-597
  1. Download : Download high-res image (126KB)
  2. Download : Download full-size image
  相似文献   

19.
Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号