首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chlorine disinfection by-products, dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are carcinogenic in mouse liver. We have previously reported that DCA and TCA induced DNA hypomethylation in mouse liver. In the present study, we determined the temporal association for DNA hypomethylation and cell proliferation. Female B6C3F1 mice were administered daily doses of 500 mg/kg DCA or TCA by gavage and sacrificed at 24, 36, 48, 72, and 96 hours after the first dose. The proliferating cell nuclear antigen-labeling index in the liver was increased at 72 and 96 hours by both DCA and TCA, that is, at 72 hours the index was 1.00 +/- 0.21, 0.51 +/- 0.11, and 0.095 +/- 0.016 for DCA, TCA, and the vehicle control, respectively. The mitotic index was also significantly increased at 96 hours. The promoter region for the c-myc gene was hypomethylated only at 72 and 96 hours and not at the earlier sacrifices. Similarly, the methylation of the c-myc gene in the kidney and urinary bladder was decreased only at 72 and 96 hours. In summary, enhancement of cell proliferation and decreased methylation of the c-myc gene were first observed simultaneously at 72 hours after the start of exposure. Thus, the results support the hypothesis that DCA and TCA induce DNA hypomethylation by inducing DNA replication and preventing the methylation of the newly synthesized strands of DNA.  相似文献   

2.
Trichloroethylene (TCE) is a multimedia environmental pollution that is carcinogenic in mouse liver. The ability of TCE to modulate DNA methylation and the expression of immediate-early protooncogenes was evaluated. Female B6C3F1 mice were administered 1000 mg/kg TCE by gavage 5 days/week and killed after 5, 12, or 33 days of exposure. Methylation of DNA as 5-methylcytosine was decreased by 5 days of treatment with TCE and remained reduced for 33 days. TCE also decreased the methylation of the promoter regions for the protooncogenes, c-jun and c-myc. The expression of the mRNA for the two protooncogenes was increased between 60 and 120 minutes after administering the last dose of TCE and returned to control level by 24 hours. The expression of the mRNA for c-fos remained undetectable after administering TCE. Hence, TCE decreased the methylation both of total DNA and the promoters for the c-jun and c-myc genes and increased the expression of their mRNA. The decreased methylation and increased expression of the two immediate-early protooncogenes might be associated with TCE-induced increase in cell proliferation and promotion of tumors.  相似文献   

3.
Usnic acid is a lichen metabolite used as a weight-loss dietary supplement due to its uncoupling action on mitochondria. However, its use has been associated with severe liver disorders in some individuals. Animal studies conducted thus far evaluated the effects of usnic acid on mitochondria primarily by measuring the rate of oxygen consumption and/or ATP generation. To obtain further insight into usnic acid-mediated effects on mitochondria, we examined the expression levels of 542 genes associated with mitochondrial structure and functions in liver of B6C3F1 female mice using a mitochondria-specific microarray. Beginning at 8 weeks of age, mice received usnic acid at 0, 60, 180, and 600 ppm in ground, irradiated 5LG6 diet for 14 days. Microarray analysis showed a significant effect of usnic acid on the expression of several genes only at the highest dose of 600 ppm. A prominent finding of the study was a significant induction of genes associated with complexes I through IV of the electron transport chain. Moreover, several genes involved in fatty acid oxidation, the Krebs cycle, apoptosis, and membrane transporters were over-expressed. Usnic acid is a lipophilic weak acid that can diffuse through mitochondrial membranes and cause a proton leak (uncoupling). The up-regulation of complexes I–IV may be a compensatory mechanism to maintain the proton gradient across the mitochondrial inner membrane. In addition, induction of fatty acid oxidation and the Krebs cycle may be an adaptive response to uncoupling of mitochondria.  相似文献   

4.
Ray SD  Parikh H  Bagchi D 《Mutation research》2005,579(1-2):81-106
Proanthocyanidins are of current interest as chemopreventive agents. The potential of the pre-, post- and co-exposure of proanthocyanidin-rich grape seed extract (GSPE) in preventing, reducing and/or delaying dimethylnitrosamine (N-nitrosodimethylamine, DMN)-induced liver tumorigenesis, carcinogenesis and mortality in male B6C3F1 mice was determined. Animals were divided into six groups: I—control, II—GSPE alone, III—DMN alone, IV—GSPE + DMN, V—DMN exposure (3 months) followed by GSPE diet (9 months) and VI—GSPE diet (3 months) + DMN (3 months) + control diet (6 months). DMN exposure (0–8 weeks: 5 mg/kg; 8–12 weeks: 10 mg/kg, i.p.) was limited to a total period of 3 months. GSPE was incorporated in laboratory chow (ADI: 100 mg/kg b.w.). Animals were sacrificed at 3 month intervals, and serum chemistry, liver histopathology, integrity of hepatic genomic DNA, antioxidant status, and rates of apoptotic and necrotic cell deaths were determined. DMN-induced liver tumor formation (85%) and animal lethality (38%) were powerfully antagonized by co-administration of GSPE + DMN (tumor positive: 45%; death: 11%). More than 75% of the DMN-treated animals had numerous tumors (five or more), which were significantly reduced in the GSPE + DMN group (35%). GSPE also negatively influenced other protocols specifically designed to test initiation and progression phases. Thus, GSPE was instrumental in modulating metabolic cascades and regulated orchestration of cell death processes involved during the multistage tumorigenic process. These results unraveled that long-term exposure to proanthocyanidin-rich grape seed extract may serve as a potent barrier to all three stages of DMN-induced liver carcinogenesis and tumorigenesis by selectively altering oxidative stress, genomic integrity and cell death patterns in vivo.  相似文献   

5.
The purpose of this study using a total of 1170 B6C3F1 mice was to detect and evaluate possible carcinogenic effects in mice exposed to radio-frequency-radiation (RFR) from Global System for Mobile Communication (GSM) and Digital Personal Communications System (DCS) handsets as emitted by handsets operating in the center of the communication band, that is, at 902 MHz (GSM) and 1747 MHz (DCS). Restrained mice were exposed for 2 h per day, 5 days per week over a period of 2 years to three different whole-body averaged specific absorption rate (SAR) levels of 0.4, 1.3, 4.0 mW/g bw (SAR), or were sham exposed. Regarding the organ-related tumor incidence, pairwise Fisher's test did not show any significant increase in the incidence of any particular tumor type in the RF exposed groups as compared to the sham exposed group. Interestingly, while the incidences of hepatocellular carcinomas were similar in EMF and sham exposed groups, in both studies the incidences of liver adenomas in males decreased with increasing dose levels; the incidences in the high dose groups were statistically significantly different from those in the sham exposed groups. Comparison to published tumor rates in untreated mice revealed that the observed tumor rates were within the range of historical control data. In conclusion, the present study produced no evidence that the exposure of male and female B6C3F1 mice to wireless GSM and DCS radio frequency signals at a whole body absorption rate of up to 4.0 W/kg resulted in any adverse health effect or had any cumulative influence on the incidence or severity of neoplastic and non-neoplastic background lesions, and thus the study did not provide any evidence of RF possessing a carcinogenic potential.  相似文献   

6.
Carcinogenesis in humans is thought to result from exposure to numerous environmental factors. Little is known, however, about how these different factors work in combination to cause cancer. Because thymic lymphoma is a good model of research for combined exposure, we examined the occurrence of mutations in thymic DNA following exposure of B6C3F1 gpt-delta mice to both ionizing radiation and N-ethyl-N-nitrosourea (ENU). Mice were exposed weekly to whole body X-irradiation (0.2 or 1.0 Gy), ENU (200 ppm) in the drinking water, or X-irradiation followed by ENU treatment. Thereafter, genomic DNA was prepared from the thymus and the number and types of mutations in the reporter transgene gpt was determined. ENU exposure alone increased mutant frequency by 10-fold compared to untreated controls and over 80% of mutants had expanded clonally. X-irradiation alone, at either low or high dose, unexpectedly, reduced mutant frequency. Combined exposure to 0.2 Gy X-rays with ENU dramatically decreased mutant frequency, specifically G:C to A:T and A:T to T:A mutations, compared to ENU treatment alone. In contrast, 1.0 Gy X-rays enhanced mutant frequency by about 30-fold and appeared to accelerate clonal expansion of mutated cells. In conclusion, repeated irradiation with 0.2 Gy X-rays not only reduced background mutation levels, but also suppressed ENU-induced mutations and clonal expansion. In contrast, 1.0 Gy irradiation in combination with ENU accelerated clonal expansion of mutated cells. These results indicate that the mode of the combined mutagenic effect is dose dependent.  相似文献   

7.
The effects of in vivo administration of the cyclodiene tumor promoter heptachlor epoxide on mouse liver protein kinase C were studied in male B6C3F1 mice by protein kinase C activity assays and Western blotting under conditions known to increase the incidence of hepatocellular carcinoma because protein kinase C is thought to be critical in phorbol ester-induced tumor promotion. Under these test conditions, 20 ppm dietary heptachlor epoxide for 1-20 days increased cytosolic and decreased particulate total protein kinase C activities, while 10 ppm had no effect. Further, total cytosolic and particulate protein kinase C activities were decreased within 1 hour by 10 mg/kg intraperitoneal (i.p.) heptachlor epoxide. Western blotting showed that conventional protein kinase Calpha and beta isoforms were unaffected by heptachlor epoxide. Particulate novel protein kinase Cepsilon, however, was selectively down-regulated by 1, 10, and 20 ppm dietary heptachlor epoxide, whereas the cytosolic isoform was decreased by 1 and 10 ppm heptachlor epoxide for 10 days. The high-dose treatment for 24 hours also decreased particulate novel protein kinase Cepsilon but increased the cytosolic titer. These results demonstrate that this isoform is unique in its sensitivity to heptachlor epoxide. Activator protein-1 DNA binding, a critical factor in tumor promotion, was substantially increased at 3 and 6 hours with 3.7 mg/kg (i.p.) heptachlor epoxide and at 3 and 10 days with 20 ppm dietary heptachlor epoxide. The effects of heptachlor epoxide on protein kinase C and activator protein-1 are similar to those caused by phorbol ester treatments and correlate well to heptachlor levels found to induce tumors in mice. However, heptachlor epoxide did not initially activate protein kinase C with in vivo treatments or with in vitro treatments of a plasma membrane fraction aimed at demonstrating direct activation, as has been shown for phorbol esters. The ability of heptachlor epoxide to down-regulate particulate novel protein kinase Cepsilon correlates to dosages used in in vivo tumor promotion studies. However, this may represent a negative feedback response rather than a causative effect.  相似文献   

8.
Rotenone decreases the incidence of hepatocellular carcinoma and lowers rates of hepatocellular proliferation. In an effort to delineate mechanisms involved, the in vivo effect of rotenone on liver mitochondrial metabolism, apoptotic machinery as well as elements of the hepatic signal transduction pathways were investigated. Mitochondria from livers of male B6C3F1 mice fed a standard diet containing 600 ppm rotenone for 7 days were uncoupled or inhibited when succinate or glutamate plus malate were used as the substrate, respectively. These livers also showed a significant increase in apoptosis compared with control livers. Furthermore, rotenone increased the expression of c-myc mRNA to 5-fold of control values within 3 days, an effect which was still observed (3-fold) after 7 days. Levels of p53 mRNA were also increased 3-fold after 1 day, but declined to control levels by 7 days. Rotenone also caused a transient, yet marked increase in liver particulate glyceraldehyde phosphate dehydrogenase (GAPDH) protein expression, while it did not alter the expression of the cytosolic form of the enzyme. Conversely, mRNA of the proto-oncogene H-ras showed a decline of 35% after 3 days of rotenone treatment, and remained diminished for the duration of the experiment. These data suggest that rotenone may act as an anticancer agent by diminishing mitochondrial bioenergetics which prevents basal hepatocyte proliferation and lowers the threshold for liver cells with DNA damage to undergo apoptosis.  相似文献   

9.
Dichloroacetate (DCA) and trichloroacetate (TCA) are prominent by-products of chlorination of drinking water. Both chemicals have been shown to be hepatic carcinogens in mice. Prior work has demonstrated that DCA inhibits its own metabolism in rats and humans. This study focuses on the effect of prior administration of DCA or TCA in drinking water on the pharmacokinetics of a subsequent challenge dose of DCA or TCA in male B6C3F1 mice. Mice were provided with DCA or TCA in their drinking water at 2 g/l for 14 days and then challenged with a 100 mg/kg i.v. (non-labeled) or gavage (14C-labeled) dose of DCA or TCA. The challenge dose was administered after 16 h fasting and removal of the haloacetate pre-treatment. The haloacetate blood concentration-time profile and the disposition of 14C were characterized and compared with controls. The effect of pre-treatment on the in vitro metabolism of DCA in hepatic S9 was also evaluated. Pre-treatment with DCA caused a significant increase in the blood concentration-time profiles of the challenge dose of DCA. No effect on the blood concentration-time profile of DCA was observed after pre-treatment with TCA. Pre-treatment with TCA had no effect on subsequent doses of DCA. Pre-treatment with DCA did not have a significant effect on the formation of 14CO2 from radiolabeled DCA. In vitro experiments with liver S9 from DCA-pre-treated mice demonstrated that DCA inhibits it own metabolism. These results indicate that DCA metabolism in mice is also susceptible to inhibition by prior treatment with DCA, however the impact on clearance is less marked in mice than in F344 rats. In contrast, the metabolism and pharmacokinetics of TCA is not affected by pre-treatment with either DCA or TCA.  相似文献   

10.
Many carcinogenic polycyclic aromatic hydrocarbons (PAHs) and their metabolites can bind covalently to DNA. Carcinogen-DNA adducts may lead to mutations in critical genes, eventually leading to cancer. In this study we report that fish oil (FO) blocks the formation of DNA adducts by detoxification of PAHs. B6C3F1 male mice were fed a FO or corn oil (CO) diet for 30 days. The animals were then treated with seven carcinogenic PAHs including benzo(a)pyrene (BaP) with one of two doses via a single intraperitoneal injection. Animals were terminated at 1, 3, or 7 d after treatment. The levels of DNA adducts were analyzed by the 32P-postlabeling assay. Our results showed that the levels of total hepatic DNA adducts were significantly decreased in FO groups compared to CO groups with an exception of low PAH dose at 3 d (P = 0.067). Total adduct levels in the high dose PAH groups were 41.36±6.48 (Mean±SEM) and 78.72±8.03 in 109 nucleotides (P = 0.011), respectively, for the FO and CO groups at 7 d. Animals treated with the low dose (2.5 fold lower) PAHs displayed similar trends. Total adduct levels were 12.21±2.33 in the FO group and 24.07±1.99 in the CO group, P = 0.008. BPDE-dG adduct values at 7 d after treatment of high dose PAHs were 32.34±1.94 (CO group) and 21.82±3.37 (FO group) in 109 nucleotides with P value being 0.035. Low dose groups showed similar trends for BPDE-dG adduct in the two diet groups. FO significantly enhanced gene expression of Cyp1a1 in both the high and low dose PAH groups. Gstt1 at low dose of PAHs showed high levels in FO compared to CO groups with P values being 0.014. Histological observations indicated that FO played a hepatoprotective role during the early stages. Our results suggest that FO has a potential to be developed as a cancer chemopreventive agent.  相似文献   

11.
In a companion paper (Luke et al., 1988), the effect of exposure duration and regimen on benzene induced-bone marrow damage was evaluated in male and female DBA/2 mice using the peripheral blood micronucleus assay. To assess the general applicability of the findings obtained for DBA/2 mice to other strains, similar studies were conducted using B6C3F1 and C57B1/6 male mice. An analysis of peripheral blood smears taken weekly from these mice exposed to 300 ppm benzene for 13 weeks (6 h per day) for either 5 days per week (Regimen 1) or for 3 days per week (Regimen 2) revealed: (i) a highly significant increase in the frequency of micronucleated polychromatic erythrocytes (MN-PCE), the magnitude of which was strain specific (DBA/2 greater than C57B1/6 = B6C3F1), but independent of exposure regimen and, except for Regimen 2 B6C3F1 mice, of exposure duration. In male B6C3F1 mice, MN-PCE frequencies increased slightly with increasing exposure duration; (ii) a strain- (C57B1/6 = B6C3F1 greater than DBA/2) and regimen- (Regimen 1 greater than Regimen 2) dependent increase across time in the frequency of micronucleated normochromatic erythrocytes (MN-NCE). Apparent steady-state conditions for MN-NCE frequencies were attained by about 5 weeks of exposure in male mice of all three strains exposed to benzene by Regimen 2. Steady-state conditions for MN-NCE frequencies in male mice exposed to benzene by Regimen 1 did not occur during the duration of the study, with strain-dependent differences in the kinetics of MN-NCE accumulation being present; and (iii) in all 3 strains, an initial severe depression in the rate of erythropoiesis, the return of which to normal levels was both strain- (C57B1/6 = B6C3F1 greater than DBA/2) and regimen- (Regimen 1 greater than Regimen 2) dependent. These data indicate that the induction of genotoxic and cytotoxic damage in the bone marrow of male mice exposed to benzene for 13 weeks can be highly dependent on strain, exposure regimen and exposure duration but that under no circumstance did the level of genotoxic damage induced by benzene decrease under multiple exposure conditions.  相似文献   

12.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   

13.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   

14.
15.
The Hepatitis B virus X (HBx) protein has been strongly implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, effects of the HBx protein on cell proliferation and cell death are controversial. This study investigates the effects of the HBx protein on liver regeneration in two independent lines of HBx transgenic mice, which developed HCC at around 14 to 16 months of age. High mortality, lower liver mass restoration, and impaired liver regeneration were found in the HBx transgenic mice post-hepatectomy. The levels of alanine aminotransferase and alpha-fetoprotein detected post-hepatectomy increased significantly in the HBx transgenic livers, indicating that they were more susceptible to damage during the regenerative process. Prolonged activation of the immediate-early genes in the HBx transgenic livers suggested that the HBx protein creates a strong effect by promoting the transition of the quiescent hepatocytes from G0 to G1 phase. However, impaired DNA synthesis and mitosis, as well as inhibited activation of G1, S, and G2/M markers, were detected. These results indicated that HBx protein exerted strong growth arrest on hepatocytes and imbalanced cell-cycle progression resulting in the abnormal cell death; this was accompanied by severe fat accumulation and impaired glycogen storage in the HBx transgenic livers. In conclusion, this study provides the first physiological evidence that HBx protein blocks G1/S transition of the hepatocyte cell-cycle progression and causes both a failure of liver functionality and cell death in the regenerating liver of the HBx transgenic mice.  相似文献   

16.
A 24-month study assessed the carcinogenic potential of the nephrotoxic mycotoxin ochratoxin A (OA) in B6C3F1 mice. Three groups of 50 males and 50 females were fed 0.1 or 40 ppm OA in the diet. Obstructive urinary tract disease (mouse urological syndrome [MUS]) accounted for the greatest number of spontaneous deaths in the male mice of control (12/50) and 1 ppm (13/50) dose groups, but the disease was not observed in the males fed 40 ppm OA. The earliest age of onset of clinical signs of MUS was 4 months and the average age of onset was 10.1 months. The first death from MUS was observed at 5 months and average age at death was 12.2 months. The mice were caged in groups of five mice per cage and clustering of cases of MUS was observed. Properties of OA which may be important to its preventive effect include inhibition of growth of gram positive bacteria and the production of polyuria as a result of renal proximal tubular damage.  相似文献   

17.
Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), a potent catalytic superoxide and peroxynitrite scavenger, has been beneficial in several oxidative stress-related diseases thus far examined. Pharmacokinetic studies are essential for the better assessment of the therapeutic potential of MnTE-2-PyP(5+) and similar compounds, as well as for the modulation of their bioavailability and toxicity. Despite high hydrophilicity, this drug entered mitochondria after a single 10 mg/kg intraperitoneal injection at levels high enough (5.1 muM; 2.95 ng/mg protein) to protect against superoxide/peroxynitrite damage. Utilizing the same analytical approach, which involves the reduction of MnTE-2-PyP(5+) followed by the exchange of Mn(2+) with Zn(2+) and HPLC/fluorescence detection of ZnTE-2-PyP(4+), we measured levels of MnTE-2-PyP(5+) in mouse plasma, liver, kidney, lung, heart, spleen, and brain over a period of 7 days after a single intraperitoneal injection of 10 mg/kg. Two B6C3F1 female mice per time point were used. The pharmacokinetic profile in plasma and organs was complex; thus a noncompartmental approach was utilized to calculate the area under the curve, c(max), t(max), and drug elimination half-time (t(1/2)). In terms of levels of MnTE-2-PyP(5+) found, the organs can be classified into three distinct groups: (1) high levels (kidney, liver, and spleen), (2) moderate levels (lung and heart), and (3) low levels (brain). The maximal levels in plasma, kidney, spleen, lung, and heart are reached within 45 min, whereas in the case of liver a prolonged absorption phase was observed, with the maximal concentration reached at 8 h. Moreover, accumulation of the drug in brain continued beyond the time of the experiment (7 days) and is likely to be driven by the presence of negatively charged phospholipids. For tissues other than brain, a slow elimination phase (single exponential decay, t(1/2)=60 to 135 h) was observed. The calculated pharmacokinetic parameters will be used to design optimal dosing regimens in future preclinical studies utilizing this and similar compounds.  相似文献   

18.
The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors.  相似文献   

19.
6-Hydroxymethylbenzo[a]pyrene was activated to an electrophilic and mutagenic sulfuric acid ester metabolite by rat and mouse liver sulfotransferase activity. The intrinsic mutagenicity of this reactive ester, 6-sulfooxymethylbenzo[a]pyrene, was inhibited by glutathione and glutathione S-transferase. A single i.p. dose of 2.5 nmol/g body wt of 6-sulfooxymethylbenzo[a]pyrene in infant male B6C3F1 mice induced liver tumors in 35 of 36 mice at 10 months with an average multiplicity of 4.4. A comparable dose of the parent hydrocarbon, 6-hydroxymethylbenzo[a]pyrene, was only a tenth as active. The electrophilic sulfuric acid ester produced high levels of benzylic DNA adducts in the livers of these mice that accounted for about 80% of the total DNA adducts. These results strongly suggest that this sulfuric acid ester is an important ultimate electrophilic and carcinogenic metabolite in carcinogenesis by 6-hydroxymethylbenzo[a]pyrene and possibly even by 6-methylbenzo[a]pyrene and benzo[a]pyrene in mouse liver.  相似文献   

20.
The present study characterized the immunohistochemical localization of beta-catenin protein in hepatocellular neoplasms and hepatoblastomas in B6C3F(1) mice exposed to diethanolamine (DEA) for 2 years and evaluated genetic alterations in the Catnb and H-ras genes which are known to play important roles in the pathogenesis of liver malignancies. Genomic DNA was isolated from paraffin sections of each liver tumor. Catnb exon 2 (corresponds to exon 3 in human) genetic alterations were identified in 18/18 (100%) hepatoblastomas from DEA exposed mice. Deletion mutations (15/18, 83%) were identified more frequently than point mutations (6/18, 33%) in hepatoblastomas. Eleven of 34 (32%) hepatocellular adenomas and carcinomas from DEA treated mice had mutations in exon 2 of the beta-catenin gene, while only 1 of 10 spontaneous neoplasms had a deletion mutation of codon 5-6. Common to all liver neoplasms (hepatocellular adenomas, carcinomas and hepatoblastomas) was membrane staining for the beta-catenin protein, while cytoplasmic and nuclear staining was observed only in hepatoblastomas. The lack of H-ras mutations in hepatocellular neoplasms and hepatoblastomas suggests that the ras signal transduction pathway is not involved in the development of liver tumors following DEA exposure which is different from that of spontaneous liver tumors that often contain H-ras mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号