首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of vanadium ions on the activities of enzymes of aerobic and anaerobic respiratory chains were investigated in vitro and in situ employing 1H-, 14N-, 31P- and 51V- nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy and spectrophotometry. Vanadate and vanadyl ions produced either non-specific redox or specific activation or inhibition of respiratory enzymes. The oxidants molybdate and chromate and the reductant dithiothreitol were used to distinguish between non-specific and specific effects of vanadium ions on enzyme activities. The results suggested that components of anaerobic respiratory chains were more susceptible to vanadium ions than those of the aerobic respiratory chain  相似文献   

2.
The effects of vanadate and vanadate complexes on the rates of exchange of phosphoryl groups in the reactions catalyzed by the enzymes phosphoglucomutase and the coupled system formed by phosphoglycerate mutase and enolase, and the effects of vanadyl complexes on the interconversion of aldehyde and keto groups catalyzed by the enzymes phosphomannose isomerase, phosphoribose isomerase, and phosphoglucose isomerase, were measured using one-dimensional 31P nuclear magnetic resonance spectroscopy. Chemical exchange was investigated by observing the transfer of magnetization achieved by selective irradiation of resonances using the DANTE pulse sequence. The presence of vanadium stimulated the catalytic activity of the enzymes in vitro, with the exception of enolase whose activity was not affected. Addition of vanadate also increased the rate constants of the interconversion of glucose 6-phosphate and fructose 6-phosphate in hemolysates. 51V nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy were employed to investigate the interactions between ammonium vanadate and sugar phosphates and the formation of vanadium--sugar phosphate complexes that may be involved in the stimulation of the catalytic activity of the isomerases.  相似文献   

3.
The effect of vanadium oxides on living systems may involve the in vivo conversion of vanadate and vanadyl ions. The addition of 5 mM orthovanadate (VO4(3-), V(V)), a known inhibitor of the (Na,K)-ATPase, to yeast cells stopped growth. In contrast, the addition of 5 mM vanadyl (VO2+, V(IV) stimulated growth. Orthovanadate addition to whole cells is known to stimulate various cellular processes. In yeast, both ions inhibited the plasma membrane Mg2+ ATPase and were transported into the cell as demonstrated with [48V]VO4(3-) and VO2+. ESR spectroscopy has been used to measure the cell-associated paramagnetic vandyl ion, while 51V NMR has detected cell-associated diamagnetic vanadium (e.g. V(V)). Cells were exposed to both toxic (5 mM) and nontoxic (1 mM) concentrations of vanadate in the culture medium. ESR showed that under both conditions, vanadate became cell associated and was converted to vanadyl which then accumulated in the cell culture medium. 51V NMR studies showed the accumulation of new cell-associated vanadium resonances identified as dimeric vanadate and decavanadate in cells exposed to toxic amounts of medium vanadate (5 mM). These vanadate compounds did not accumulate in cells exposed to 1 mM vanadate. These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms. These data also support the hypothesis that the stimulatory form of vanadium usually observed in whole cell experiments is the vanadyl ion or one or more of its liganded derivatives.  相似文献   

4.
Vanadate causes a rapid breakdown of 2,3-bisphosphoglycerate in intact erythrocytes. This metabolite is nearly stoichiometrically transformed into pyruvate, which changes the cell redox state and enhances the glycolytic flux. The results show that the vanadate effect on 2,3-bisphosphoglycerate, also evident in hemolysates, is attributable to the stimulation of a phosphatase activity of the phosphoglycerate mutase. In agreement with others (J. Carreras, F. Climent, R. Bartrons and G. Pons (1982) Biochim. Biophys. Acta705, 238–242), vanadate is thought to destabilize the phosphoryl form of this enzyme which shows competitive inhibition between the ion and 2,3-bisphosphoglycerate in the mutase reaction. A competitive inhibition between vanadate and glucose 1,6-bisphosphate is also found for phosphoglucomutase, without evidence for phosphatase activity toward the bisphosphate cofactor.  相似文献   

5.
The fate of vanadate (+5 oxidation state of vanadium) taken up by the red cell was studied using EPR spectroscopy. The appearance of an EPR signal indicated that most of the cytoplasmic vanadate is reduced to the +4 oxidation state with axial symmetry characteristic of vanadyl ions. The signal at 23 degrees C was characteristic of an immobilized system indicating that the vanadyl ions in the cytoplasm are associated with a large molecule. [48V]Vanadium eluted with hemoglobin when the lysate from Na3[48V[O4-treated red cells was passed through a Sephadex G-100 column and rabbit anti-human hemoglobin serum caused a hemoglobin-specific precipitation of 48V when added to the red cell lysate. Both results indicate that hemoglobin is the protein which binds cytoplasmic vanadyl ions. However, neither sodium vanadate nor vanadyl sulfate bound to purified hemoglobin in vitro. Finally, transient kinetics of vanadyl sulfate interaction with the sodium-and potassium-stimulated adenosine triphosphatase showed that the +4 oxidation state of vanadium is less effective than the +5 oxidation state in inhibiting this enzyme. These results indicate that oxidation-reduction reactions in the cytoplasm are capable of relieving vanadate inhibition of cation transport.  相似文献   

6.
The binding of inorganic vanadate (Vi) to rabbit muscle phosphoglycerate mutase (PGM), studied by using 51V nuclear magnetic resonance spectroscopy, shows a sigmoidal dependence on vanadate concentration with a stoichiometry of four vanadium atoms per PGM molecule at saturating [Vi]. The data are consistent with binding of one divanadate ion to each of the two subunits of PGM in a noncooperative manner with an intrinsic dissociation constant of 4 X 10(-6) M. The relevance of this result to other studies which have shown that the Vi-stimulated 2,3-diphosphoglycerate (2,3-DPG) phosphatase activity of PGM has a sigmoidal dependence on [Vi] with a Hill coefficient of 2.0 is discussed. At pH 7.0, inorganic phosphate has little effect on the 2,3-DPG phosphatase activity of PGM, even at concentrations as high as 50 mM. Similarly, 25 microM Vi has little effect on the phosphatase activity. However, in the presence of 25 microM Vi, a phosphate concentration of 20 mM increases the phosphatase activity by more than 3-fold. This behavior is rationalized in terms of activation of the phosphatase activity by a phosphate/vanadate mixed anhydride. This interpretation is supported by the observation of strong activation of the phosphatase activity by inorganic pyrophosphate. A molecular mechanism for the observed effects of vanadate is proposed, and the relevance of this study to the possible use of vanadate as a therapeutic agent for the treatment of sickle cell anemia is discussed.  相似文献   

7.
Effect of vanadate and vanadyl ions on the ATP-dependent succinyl-CoA synthetase (A-SCS) solubilized by Lubrol-PX from the rat brain mitochondria was tested. Vanadate added to the assay medium at 10(-5) mol.l-1 and 10(-4) mol.l-1 concentrations inhibited the enzyme activity by about 50% and 94%, respectively. When the enzyme was solubilized from the mitochondria preincubated with 10(-4) mol.l-1 and 10(-3) mol.l-1 vanadate, the residual inhibitions were 55% and 100% respectively. The vanadyl cation also induced inhibition of the A-SCS activity but the effect was less expressed. At 10(-4) mol.l-1 concentration only 20% inhibition was achieved. The A-SCS solubilized from the mitochondrial subfractions (perikaryal, light and heavy synaptosomal) differed neither in the activity of A-SCS nor in the susceptibility toward action of vanadium ions. A strong dependence of the vanadate inhibition on the concentration of succinate was observed. The above effect (50% inhibition) could be demonstrated only at saturating concentration of succinate (50 mmol.l-1). The mechanism of vanadium ions action as well as differences between vanadate and vanadyl ions effects are discussed.  相似文献   

8.
During incubation with vanadyl, Saccharomyces cerevisiae yeast cells were able to accumulate millimolar concentrations of this divalent cation within an intracellular compartment. The intracellular vanadyl ions were bound to low molecular weight substances. This was indicated by the isotropic nature of the electron paramagnetic resonance (EPR) spectra of the respective samples. Accumulation of intracellular vanadyl was dependent on presence of glucose during incubation. It could be inhibited by various di- and trivalent metal cations. Of these cations lanthanum displayed the strongest inhibitory action. If yeast cells were exposed to more than 50 microM vanadyl sulfate at a pH higher than 4.0, a potassium loss into the medium was detected. The magnitude of this potassium loss suggests a damage of the plasma membrane caused by vanadyl. Upon addition of vanadate to yeast cells surface-bound vanadyl was detectable after several minutes by EPR. This could be the consequence of extracellular reduction of vanadate to vanadyl. The reduction was followed by a slow accumulation of intracellular vanadium, which could be inhibited by lanthanum or phosphate. Therefore, permeation of vanadyl into the cells can be assumed as one mechanism of vanadium accumulation by yeast during incubation with vanadate.  相似文献   

9.
In human erythrocytes the reactions of the 2,3-bisphosphoglycerate shunt are catalyzed primarily by one protein, 2,3-bisphosphoglycerate synthase-phosphatase. At low concentrations of 2,3-bisphosphoglycerate the phosphatase is activated by several anions including inorganic phosphate and sulfite, and the phosphate activation is inhibited by low concentrations of 3-phosphoglycerate [Z. B. Rose and J. Liebowitz (1970) J. Biol. Chem. 245, 3232-3241]. Phosphate and sulfite also activate at high but physiological concentrations of 2,3-bisphosphoglycerate (5 mM), but the inhibition by 3-phosphoglycerate is much weaker. The basal activity (without added phosphate or sulfite) was also found to be higher and to be 3-phosphoglycerate sensitive; this is attributed to activation either by 2,3-bisphosphoglycerate itself or by a contaminant in it. These results allow previous observations of 2,3-bisphosphoglycerate hydrolysis in intact erythrocytes to be reconciled with the properties of the purified enzyme under near-physiological conditions.  相似文献   

10.
Vanadium compounds are known to stimulate the oxidation of NAD(P)H, but the mechanism remains unclear. This reaction was studied spectrophotometrically and by electron spin resonance spectroscopy (ESR) using vanadium in the reduced state (+4, vanadyl) and the oxidized state (+5, vanadate). In 25 mM sodium phosphate buffer at pH 7.4, vanadyl was slightly more effective in stimulating NADH oxidation than was vanadate. Addition of a superoxide generating system, xanthine/xanthine oxidase, resulted in a marked increase in NADH oxidation by vanadyl, and to a lesser extent, by vanadate. Decreasing the pH with superoxide present increased NADH oxidation for both vanadate and vanadyl. Addition of hydrogen peroxide to the reaction mixture did not change the NADH oxidation by vanadate, regardless of concentration or pH. With vanadyl however, addition of hydrogen peroxide greatly enhanced NADH oxidation which further increased with lower pH. Use of the spin trap DMPO in reaction mixtures containing vanadyl and hydrogen peroxide or a superoxide generating system resulted in the detection by ESR of hydroxyl. In each case, the hydroxyl radical signal intensity increased with vanadium concentration. Catalase was able to inhibit the formation of the DMPO--OH adduct formed by vanadate plus superoxide. These results show that the ability of vanadium to act in a Fenton-type reaction is an important process in the vanadium-stimulated oxidation of NADH.  相似文献   

11.
Wei Q  Yan L 《Biological chemistry》2000,381(4):309-312
Calcineurin (CN) exhibits a bimodal regulation by different concentrations of vanadyl ions (VO2+) in the presence of Mn2+. Low concentrations of VO2+ inhibit the enzyme, with 50 microM VO2+ completely inhibiting CN activity, while high concentrations, up to 500 microM VO2+, stimulate the CN activity. A similar bimodal regulation of CN was not observed with either calcium or vanadate under the same conditions. X-band electron spin resonance spectroscopy, used to study the binding of VO2+ to the catalytic subunit A of calcineurin, show that there are two kinds of binding sites in the A subunit.  相似文献   

12.
Vanadate is known to inhibit several phosphatases including Na+, K+-ATPase, alkaline phosphatase, and glyceraldehyde-3-P dehydrogenase. Inhibition presumably results because vanadium adopts a stable structure which resembles the transition state of phosphate during the reactions involving these enzymes. We performed experiments to further examine the effects of vanadate (VO3-4) on erythrocyte (red blood cells (RBC] glycolytic intermediates. RBC obtained from human subjects were centrifuged and washed with lactated Ringer's 5% dextrose. 31P nuclear magnetic resonance analysis of the RBC revealed the characteristic peaks for the 3-phosphate and 2-phosphate of 2,3-diphosphoglycerate (DPG), inorganic phosphate (Pi), and ATP. Incubation of RBC with 10(-6) M VO3-4 led to a disappearance of ATP and 2,3-DPG while the peak for Pi increased. By the end of 4 h over 90% of the VO3-4 had been reduced to VO2+ (vanadyl) in the RBC. The effects of 10(-4) M iodoacetamide and 10(-5) M ethacrynic acid, known inhibitors of glyceraldehyde-3-P dehydrogenase that act by interactions with sulfhydryl groups (-SH) of the enzyme, were similar to those of VO3-4. Incubation with vanadyl did not affect the peaks for Pi, 2-DPG, or 3-DPG. Furthermore, using electron spin resonance we demonstrated that in the presence of glyceraldehyde-3-P dehydrogenase, VO3-4 is reduced to VO2+. The findings demonstrate that VO3-4 inhibits glycolysis at micromolar concentrations and that the ion is reduced to VO2+ in the cell. The similarity of the effect of VO3-4 to those of iodoacetamide and ethacrynic acid suggests that interactions with -SH groups is its mechanism of inhibition. Since under physiological conditions intracellular VO3-4 concentrations are in the micromolar range and may exist in oxidized and/or reduced forms, VO3-4 could regulate the activity of glyceraldehyde-3-P dehydrogenase through changes in the redox state of the enzyme rather than by substituting for the PO3-4 ion.  相似文献   

13.
The influence of vanadate on the adsorption properties of Merocyanine 540 (MC540) to UMR cells was studied by means of specrofluorometry. An increment in the fluorescence was observed in the osteoblasts incubated with 0.1 mM vanadate. This effect could be interpreted in terms of vanadate inhibitory effects on aminotraslocase activity. However, vanadate promotes a similar behavior to that found in UMR 106 cells when it was added to lipid vesicles composed of phosphatidylcholine. The effect of vanadium in different oxidation states, such as vanadate(V) and vanadyl(IV) on lipid membrane properties was examined in large unilamellar vesicles by means of spectrofluorometry employing different probes. Merocyanine 540 and 1,6-diphenylhexatriene were used in order to sense the changes at interfacial and hydrophobic core of membranes, respectively. In contrast to vanadate, vanadyl decreased the fluorescence of MC540. Both vanadium compounds slightly perturbed the hydrocarbon core. The results can be interpreted by the specific adsorption of both compounds on the polar head groups of phospholipid and suggest a possible influence of vanadium compounds on the lipid organization of cell membranes.  相似文献   

14.
Vanadium compounds are shown to have a mitogenic effect on fibroblast cells. The effects of vanadate, vanadyl and pervanadate on the proliferation and morphological changes of Swiss 3T3 cells in culture are compared. Vanadium derivatives induced cell proliferation in a biphasic manner, with a toxic-like effect at doses over 50mM, after 24h of incubation. Vanadyl and vanadate were equally potent at 2.5–10mM. At 50mM vanadate inhibited cell proliferation, whereas slight inhibition was observed at 100mM of vanadyl. At 10mM pervanadate was as potent as vanadate and vanadyl in stimulating fibroblast proliferation, but no effect was observed at lower concentrations. A pronounced cytotoxic-like effect was induced by pervanadate at 50mM. All of these effects were accompanied by morphological changes: transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation; and loss of lamellar processes. The magnitude of these transformations correlates with the potency of vanadium derivatives to induce a cytotoxic-like effect: pervanadate>vanadate>vanadyl. These data suggest that the oxidation state and coordination geometry of vanadium determine the degree of the cytotoxicity.  相似文献   

15.
There are two types of phosphoglycerate mutases. The 2,3-bisphosphoglycerate dependent phosphoglycerate mutases are inhibited by vanadate. In contrast, the 2,3-bisphosphoglycerate independent mutases are not affected. The effect of vanadate varies with pH, and can be reversed by dilution, EDTA and norepinephrine. The differential effect of vanadate on the two types of phosphoglycerate mutases supplies a novel way to easily differentiate both types of enzymes. In addition, it may contribute to the clarification of the mechanism of action of the 2,3-bisphosphoglycerate independent phosphoglycerate mutases.  相似文献   

16.
Reduction of Vanadate by Ascorbic Acid and Noradrenaline in Synaptosomes   总被引:3,自引:2,他引:1  
The effect of ascorbic acid and noradrenaline on the inhibition of synaptosomal membrane ATPase by vanadate has been studied. Ascorbic acid (2 x 10(-3) M) and noradrenaline (10(-4) M) partly reversed the inhibition by vanadate (10(-6) M); however, when both were administered together the inhibition was completely eliminated. Using electron spin resonance (ESR) spectroscopy, we detected that ascorbic acid (10(-3) M) caused a 42% of reduction of vanadate (10(-4) M). Noradrenaline (10(-4) M) alone also reduced vanadate (10(-4) M) partially. When ascorbic acid and noradrenaline were present together all the vanadate was reduced to vanadyl. The concentration of ascorbic acid present in the brain under physiological conditions is identical to that found effective in our experiments. We suggest that ascorbic acid may protect the ATPase, at least in part, from inhibition by vanadate as a consequence of reducing vanadate to vanadyl. In those tissues where noradrenaline is also present a complete reduction of endogenous vanadium can be presumed.  相似文献   

17.
Electron paramagnetic resonance (epr) and ultraviolet difference spectroscopy of vanadyl conalbumin indicate a binding capacity of two vanadyl ions, VO2+, per protein molecule in the pH 8–11 range; the binding capacity drops in the pH 6–8 range with an apparent pKa′ = 6.6. Iron-saturated conalbumin does not bind vanadyl ions, which suggests common binding sites for iron and vanadium. Ultraviolet difference spectroscopy indicates 2–3 tyrosines are involved in the binding of each metal ion; pH titrations show that three protons are released per vanadyl ion bound by conalbumin. Room and liquid nitrogen temperature X-band (ca. 9.2–9.5 gHz) epr spectra show that the vanadyl ion binds in three magnetically distinct environments (A, B, and C) that arise from interconvertible metal site configurations. These configurations are probably examples of conformational substrates of the protein. Q-band (ca 34 gHz) epr spectra resolve the spectral features more clearly and show that two configurations (A and B) have axially symmetric epr parameters but angles of noncoincidence of 12° and 8°, respectively, between the z components of the g and nuclear hyperfine tensors. The third (C) configuration has rhombic magnetic symmetry and a 6° angle of noncoincidence. These observations demonstrate that the metal sites are of low symmetry and are flexible in their geometry about the metal.The isotropic g and nuclear hyperfine tensor values and the line widths used in computer-simulated epr spectra are consistent with four oxygen or three oxygen and one nitrogen donor atoms binding equatorially to the VO2+ group. The apparent stability constant indicates that vanadyl ion binds to conalbumin approximately twelve orders of magnitude more weakly than iron to human serotransferrin but still sufficiently strongly to overcome hydrolysis.  相似文献   

18.
Vanadate and vanadyl have many insulin-mimetic effects on cellular metabolism and also have been shown to alter cellular Ca2+ fluxes. In this report, vanadate and vanadyl, like insulin, are shown to inhibit the plasma membrane (Ca2+ + Mg2+)-ATPase/Ca2+ transport system as well as Ca2+ transport by endoplasmic reticulum from rat adipocytes. Ca2+ transport by the endoplasmic reticulum was inhibited half-maximally (I50) by vanadate and vanadyl at concentrations of 30 and 33 microM, respectively. Inhibition of the plasma membrane Ca2+ transport by vanadate and vanadyl was less sensitive, with I50 values of 144 and 92 microM, respectively. These I50 values for plasma membrane Ca2+ transport were similar when measured under conditions of calmodulin-stimulated and non-calmodulin-stimulated Ca2+ transport. The predominant effect of both ions on the kinetic parameters of Ca2+ transport was a substantial decrease in the Vmax by 43-46% for both transport systems. An increase in intracellular Ca2+ following the inhibition of the (Ca2+ + Mg2+)-ATPase/Ca2+ pump in the plasma membrane and endoplasmic reticulum by these vanadium ions may result, at least in part, in the observed insulin-mimetic alterations in cellular metabolism.  相似文献   

19.
Bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities responsible for 2,3-bisphosphoglycerate metabolsim in human red cells are displayed by the same enzyme protein which has phosphoglyceromutase activity [Sasaki, R., et al. (1975) Eur J. Biochem. 50, 581-593]. This enzyme was subjected to chemical modification by trinitrobenzenesulfonate. The three enzyme activities were inactivated by trinitrobenzenesulfonate at the same rate. The sulfhydryl content of the enzyme was unchanged during trinitrophenylation, indicating that derivatization was through the amino group. Trinitrophenylation of about one amino group per mole of the enzyme resulted in complete loss of the three activities. Both 2,3-bisphosphoglycerate and 1,3-bisphosphoglycerate inhibited trinitrophenylation and effectively protected the enzyme from inactivation. Although monophosphoglycerates did not show any protective effect at concentrations which should be adequate based upon their kinetic constants, they were protective at higher concentrations. Inactivation by trinitrophenylation was an apparent first-order reaction. The dissociation constant of the enzyme - 2,3-bisphosphoglycerate complex was determined by analyzing the first-order reaction on the assumption that the protective effect of 2,3-bisphosphoglycerate was due to competition with trinitrobenzenesulfonate. The dissociation constant was in good agreement with kinetic constants of 2,3-bisphosphoglycerate in the enzyme reactions, which indicated that 2,3-bisphosphoglycerate did indeed exert its protective effect through competition with trinitrobenzenesulfonate for an amino group of the enzyme. The protective effect of monophosphoglycerates could be rationalized with kinetic evidence that 2-phosphoglycerate at high concentrations interacts with the 2,3-bisphosphoglycerate binding site. These results indicate that the enzyme exhibits the three enzyme activities at a common active site at which one amino group essential for binding of bisphosphoglycerates is located. Based on the multifunctional properties of this enzyme, a possible mechanism was discussed for regulation of 2,3-bisphosphoglycerate metabolism in human red cells.  相似文献   

20.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号