首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guppies Poecilia reticulata acclimated to 100% seawater (SW) had lower taurine and alanine levels in muscle than fish kept in freshwater (FW). The glycine level, in contrast, was higher in SW fish than in FW fish. Levels of other free amino acids (FAA) were comparatively low and little different between fish adapted in FW and in SW. In both FW and SW fish almost all of muscle FAA showed little difference in levels between fish kept on diets containing three different levels of trimethylamine (TMA) (0, 223, and 334 mumol TMA/kg dry weight of diet). Total FAA and nonprotein nitrogen levels in muscle were unaffected by the difference in either the diet species or the ambient salinities. Muscle trimethylamine oxide levels were higher in SW fish than in FW fish. In both salinities, muscle trimethylamine oxide levels in fish on the diets containing 223 and 334 mumol TMA/kg were slightly greater than the level in fish on the TMA-free diet.  相似文献   

2.
This study was conducted to investigate taurine deficiency and the ability of taurine biosynthesis in both juvenile Japanese flounder (JF) and juvenile common carp (CC) in vivo using low taurine level diets. Three different taurine level diets were prepared by the supplementation of taurine to the basal composition (JF--0, 0.5 and 1.5% in JF; CC--0, 1, 3% in CC). The final average body weight and feed efficiency of JF fed the JF - 1.5% was significantly higher than those of fish fed on the JF--0%. On the other hand, no significant difference was observed in CC fed with CC--0, 1, and 3% diets. The taurine retention rate was negative in the case of JF-fed with the taurine-free supplement (JF--0%). On the other hand, the taurine retention rate was about 280% in the case of CC-fed with the taurine-free supplement (CC--0%). These findings indicate that while taurine is essential for growth of JF, it is not essential for the growth of CC.  相似文献   

3.
We assessed the effects of dietary fatty acid composition on sodium–potassium ATPase (Na+/K+-ATPase) activity and isoform expression in the gills of juvenile fall chinook salmon, Oncorhynchus tshawytscha by supplementing diets with either anchovy oil (AO) or AO blended with canola oil (CO) so that CO comprised 0% (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO), or 54% (54CO) of the measured dietary lipid content. The effects of diet were assessed in freshwater (FW) following 104 days of diet manipulation, in response to 24-h seawater (SW) transfer at this time, and following an additional 35 days of SW acclimation. Gill Na+/K+-ATPase activity was not significantly affected by diet at any sampling time, and there were no consistent effects of diet on the expression of the Na+/K+-ATPase α1a isoform. As dietary CO increased, Na+/K+-ATPase α1b mRNA decreased in fish held in FW, with the 43CO and 54CO diet groups having significantly lower levels than fish fed the 0CO and 11CO diets. Twenty-four-hour SW challenge did not affect the expression of the Na+/K+-ATPase α1a isoform in any diet group, but this isoform was down-regulated in all diet groups following 35 days of SW acclimation. Na+/K+-ATPase α1b expression levels increased in response to 24-h SW transfer and SW acclimation only in fish fed the 54CO diet. The effects of the two extreme diets (0CO and 54CO) were also assessed at various time points during 104 days of rearing in FW. Na+/K+-ATPase α1b mRNA levels were greater in fish fed diet 0CO versus those fed diet 54CO at all times during the FW culture period. These data demonstrate that dietary fatty acid composition can influence the gill Na+/K+-ATPase isoform physiology of juvenile fall-run chinook salmon prior to SW transfer.  相似文献   

4.
Effects of environmental salinity and 17α-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3–5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear.  相似文献   

5.
Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na+/K+-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.  相似文献   

6.
With a view to test how the branchial and intestinal tissues of fish, the two sites of metal acquisition, utilize the water-borne ferric [Fe(III)] iron and whether the accumulation of this form of iron influences cellular Na/K gradient in these tissues, the gills and intestines of climbing perch adapted to freshwater (FW) and acclimated to dilute seawater (20 ppt; SW) were analyzed for ouabain-sensitive Na+, K+-ATPase activity, Fe and electrolyte contents after loading a low (8.95 microM) or high dose (89.5 microM) of Fe(III) iron in the water. The SW gills showed higher levels of total Fe after treating with 8.95 microM of Fe(III) iron which was not seen in the FW gills. Na+, K+-ATPase activity, reflecting Na/K pump activity, showed an increase in the FW gills and not in the SW gills. Substantial increase in the branchial Na and K content was observed in the SW gills, but the FW gills failed to show such effects after Fe(III) loading. The total Fe content was declined in the FW intestine but not in the SW intestine. Water-borne Fe(III) iron decreased the activity of Na+, K+-ATPase in the SW intestine while not changing its activity in the FW intestine. The Na and K content in the FW intestine did not respond to Fe(III) iron exposure but showed a reduction in its Na levels in the SW intestine. The moisture content in the gills and intestines of both the FW and SW perch remained unaffected after Fe(III) loading. In FW fish, the plasma Na levels were decreased by a low dose of Fe(III) iron, though a high dose of Fe(III) iron was required in the SW fish for such an effect. Overall, the results for the first time provide evidence that gills act as a major site for Fe(III) iron absorption and accumulation during salinity acclimation which depends on a high cellular Na/K gradient.  相似文献   

7.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

8.
The effect of dietary taurine on cholesterol metabolism and the distribution of lipoprotein-cholesterol in serum of rats fed a diet containing polychlorinated biphenyls (PCB) was examined. Young male Wistar rats (60 g) were fed diets containing 0.2 g/kg diet of PCB and/or 30 g/kg diet of taurine for 15 days. The experiment was performed as the 2 (PCB) x 2 (taurine) factorial design. The addition of PCB elevated serum levels of total- and HDL-cholesterol and apolipoprotein A-I, which is a major apolipoprotein of HDL. Simultaneous supplementation of taurine with PCB amplified the increase of the serum level of total- and HDL-cholesterol. Hepatic concentrations of cholesterol and total lipids were significantly elevated by the supplementation of PCB, and taurine significantly amplified these increases caused by PCB. PCB suppressed hepatic cholesterol 7alpha-hydroxylase (CYP7A1) gene expression, and taurine induced CYP7A1 gene expression. Taurine also enhanced PCB-induced elevation of malic enzyme mRNA in the liver. These results suggest that taurine enhanced PCB-induced hyper-alpha-cholesterolemia and that taurine has a role in increasing HDL-cholesterol.  相似文献   

9.
The influence of acclimation to seawater (SW) and growth hormone (GH) administration on immune functions was examined in the rainbow trout (Oncorhynchus mykiss). After 3 days acclimation to dilute SW (12 parts per thousand, ppt), an increase in plasma lysozyme activity was observed compared to the fish kept in fresh water (FW). No change was seen in plasma immunoglobulin M (IgM) levels. When they were transferred from dilute SW to full-strength SW (29 ppt) after a single intra-peritoneal injection of ovine or salmon GH, plasma sodium levels of GH-treated fish were significantly lower than those of the control fish injected with Ringer's solution 24 h after the transfer. The plasma level of IgM was not influenced by GH injection in the fish kept in FW nor in those transferred to SW. The administration of GH increased plasma lysozyme activity in the fish in FW, but no further increase was seen after SW transfer. The production of superoxide anions in peripheral blood leucocytes was stimulated by GH in both FW and SW. These results suggest that GH is involved in the stimulation of the non-specific immune functions in SW-acclimated salmonids.  相似文献   

10.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24 h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24 h, diminishing to FW values. Nerve FAA increase 187% within 24 h, and remain elevated. Hemolymph FAA decrease (-75%) after 24 h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (-70%) decreases. Total FAA pools contribute 10-20% to intracellular (22-70 mmol/kg) and 0.5-2.4% to hemolymph (3-7 mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

11.
12.
In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.  相似文献   

13.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

14.
Repeated blood withdrawal (5% of estimated blood volume at 0, 1, 4, 8, 24, 48 and 76 h) from tilapia acclimated to fresh water (FW) resulted in a marked increase in plasma levels of prolactin (PRL) during the first 8 h, reaching a peak above 300 ng/ml after 4 h. The increase in plasma PRL levels was significant except for the level after 72 h. A slight but significant decrease in plasma osmolality was observed at all time points after the blood withdrawal. Repeated blood withdrawal from fish acclimated to seawater (SW) resulted in a marked increase in plasma osmolality after 4 and 8 h. A significant increase was observed in plasma growth hormone (GH) in the fish in SW until the end of the experiment, but there was no change in plasma PRL. Plasma levels of cortisol were significantly higher in the fish in SW than in those in FW during the first 24 h. Blood withdrawal resulted in a significant reduction in hematocrit values in both FW- and SW-adapted fish, suggesting hemodilution. In a separate experiment, a single blood withdrawal (20% of total blood) stimulated drinking after 5 h, regardless of whether the fish were held in FW or SW. Plasma PRL level was also elevated following a single blood withdrawal in the fish acclimated to FW, but not in the fish in SW. Intraperitoneal injection of ANG II (1.0 microg/g) into the fish in FW significantly increased plasma PRL levels after 1 h. Activation of the renin-angiotensin system after blood withdrawal and the dipsogenic action of angiotensin II (ANG II) are well established in fish. The reduction in plasma osmolality after repeated blood withdrawal in FW and the increased osmolality in SW suggest that blood volume is restored, at least in part, by drinking environmental water. These results suggest that the marked increase in PRL concentration after blood withdrawal from the fish in FW is due, at least in part, to a facilitative effect between ANG II and reduced plasma osmolality.  相似文献   

15.
Li  Xinyu  Zheng  Shixuan  Cheng  Kaimin  Ma  Xuekun  Wu  Guoyao 《Amino acids》2021,53(1):49-62

Fishmeal has long been a staple protein feedstuff for fish, but its global shortage and high price have prompted its replacement with alternative sustainable sources. In this experiment involving largemouth bass (a carnivorous fish), a new mixture of feedstuffs (45% poultry byproduct meal, 30% soybean meal, 15% blood meal, and 10% krill shrimp meal) was added to low (14.5%) fishmeal diets along with 0.0%, 0.5% taurine, 0.5% methionine, or 0.5% taurine plus 0.5% methionine (dry matter basis). The positive control diet [65.3% fishmeal (46% crude protein on dry matter basis)] and all low-fishmeal diets contained 40% true protein and 10% lipids. There were 3 tanks per treatment group (20 fish/tank). Fish with the mean initial body weight of 16.6 g were fed to satiety twice daily. Compared with the unsupplemented low-fishmeal group, supplementing either 0.5% methionine or 0.5% methionine plus 0.5% taurine to the low-fishmeal diet improved (P < 0.05) the growth, feed utilization, retention of dietary protein and lipids, and health of largemouth bass, reduced (P < 0.05) the occurrence of black skin syndrome from ~ 40 to ~ 10%. Histological sections of tissues from the fish with black skin syndrome showed retina degeneration, liver damage, and enteritis in the intestine. Compared with methionine supplementation, supplementing 0.5% taurine alone to the low-fishmeal diet did not affect the growth or feed efficiency of fish and had less beneficial effects (P < 0.05) on ameliorating the black skin syndrome. These results indicated that: (a) the basal low-fishmeal diet was inadequate in methionine or taurine; and (b) dietary supplementation with methionine was an effective method to improve the growth performance, feed efficiency, and health of largemouth bass. Further studies are warranted to understand the pathogenesis of the black skin syndrome in largemouth bass.

  相似文献   

16.
Taurine has been considered as an essential nutrient for many aquaculture species. While dietary taurine supplementation is highly recommended, novelty studies on taurine metabolism in fish are needed. The present study aimed to provide insight into the molecular mechanisms involved in multiple metabolome changes in Nile tilapia (Oreochromis niloticus) by studying plasma metabolic profile changes in response to graded levels of dietary taurine supplementation. The analysis used proton nuclear magnetic resonance-based metabolomics. Four groups of tilapias were fed with four diets supplemented with 0.0, 0.4, 0.8 and 1.2% taurine for 84 days. Fish plasma was sampled at multiple time points to provide an accurate snapshot of specific metabolic profiles during growth. Under the effect of taurine supplementation, 21 and 12 metabolites in tilapia plasma shown significant changes in terms of time-dependence and diet-dependence, respectively. These metabolic changes in tilapia plasma were mainly associated with energy and amino acid metabolism, lipids, nucleotides and protein metabolism. The results indicate that 0.8% taurine supplementation could significantly improve the carbohydrate synthesis, protein digestion and absorption, and fat deposition of tilapia and thereby promoted growth and development of tilapia.  相似文献   

17.
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, gill Na(+)-K(+)-ATPase activities were higher than those of fish in FW. Fish in 35 ppt SW did not increase gill Na(+)-K(+)-ATPase activities until 1.5 h after transfer, and then the activities were not significantly different from those of fish in 25 ppt SW. Compared to FW, the gill CK activities in 35 ppt SW declined within 1.5 h and afterward dramatically elevated at 2 h, as in 25 ppt SW, but the levels in 35 ppt SW were lower than those in 25 ppt SW. The Western blot of muscle-type CK (MM form) was in high association with the salinity change, showing a pattern of changes similar to that in CK activity; however, levels in 35 ppt SW were higher than those in 25 ppt SW. The activity of Na(+)-K(+)-ATPase highly correlated with that of CK in fish gill after transfer from FW to SW, suggesting that phosphocreatine acts as an energy source to meet the osmoregulatory demand during acute transfer.  相似文献   

18.
Trout are of interest in defining the relationship between fluid and salt balance on cardiovascular function because they thrive in freshwater (FW; volume loading, salt depleting), saltwater (SW; volume depleting, salt loading), and FW while fed a high-salt diet (FW-HS; volume and salt loading). The effects of chronic (>2 wk) adaptation to these three protocols on blood volume (51Cr red cell space), extracellular fluid volume (99mTc-diethylene triaminepenta-acetic acid space), arterial (dorsal aortic; P(DA)) and venous (ductus Cuvier; Pven) blood pressure, mean circulatory filling pressure (zero-flow Pven), and vascular capacitance were examined in the present study on unanesthetized rainbow trout. Blood volume, extracellular fluid volume, P(DA), Pven, and mean circulatory filling pressure progressively increased in the order SW < FW < FW-HS. Vascular capacitance in SW fish appeared to be continuous with the capacitance curve of FW fish and reflect a passive volume-dependent unloading of the venous system of FW fish. Vascular capacitance curves for FW-HS fish were displaced upward and parallel to those of FW fish, indicative of an active increase in unstressed blood volume without any change in vascular compliance. These studies are the first in any vertebrate to measure the relationship between fluid compartments and cardiovascular function during independent manipulation of volume and salt balance, and they show that volume, but not salt, balance is the primary determinant of blood pressure in trout. They also present a new paradigm with which to investigate the relative contributions of water and salt balance in cardiovascular homeostasis.  相似文献   

19.
Summary Rates of intestinal water, sodium and chloride absorption in tilapia, adapted to fresh water (FW) and seawater (SW), were measured in vitro, using noneverted sacs made from the anterior, middle and posterior intestinal regions. The anterior intestine from SW fish showed considerably less water, sodium and chloride absorption compared with that seen in FW fish. The middle intestine showed either minimal absorption or some secretion in both FW and SW. In the posterior intestine, water absorption was only limitedly affected by SW-adaptation, but sodium and chloride absorption rates were significantly lower in SW fish. Reductions in water absorption were already evident in the anterior intestine 24 h after transfer to 1/3 SW but reached lower levels 3 to 5 days following transfer to 100% SW. Thus, the anterior intestine of tilapia responds to increased environmental salinity by decreasing uptake of ions, whereas the posterior intestine maintains similar water absorption in both FW and SW, although ion absorption is lower in SW.Prolactin administration to SW fish augmented sodium and water absorption in the anterior intestine but had no effect on chloride absorption. In contrast, cortisol administration to FW fish decreased absorption of sodium, chloride and water to levels usually seen in SW fish. The observed effects of these hormones in tilapia intestinal absorption may be confined to the specialized anterior intestinal region in this species; hormonal effects on the rest of the intestine were not examined.  相似文献   

20.
The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na(+)-K(+)-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号