首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

2.
The synthesis of Mn- and FeSODs in response to temperature changes was examined in strains of Escherichia coli with different mutations in sod and htpR genes. Growth at or shift to elevated temperatures induced FeSOD but not MnSOD. The induction of FeSOD by heat was inhibited by chloramphenicol and was independent of the heat shock (htpR-controlled) regulon. FeSOD was more stable at 42 degrees C than was MnSOD.  相似文献   

3.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

4.
The effects of superoxide dismutase on H2O2 formation   总被引:1,自引:1,他引:1  
Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.  相似文献   

5.
Cu,Zn SOD is known to be inactivated by HO2 and to be protected against that inactivation by a number of small molecules including formate, imidazole, and urate. This inactivation has been shown to be due to oxidation of a ligand field histidine residue by a bound oxidant formed by reaction of the active site Cu(II) with HO2. We now report that protective actions of both formate and NADH increase as the pH was raised in the range 8.0–9.5. This is taken to indicate increased accessibility of the Cu site with rising pH and/or increased reactivity of the bound oxidant toward exogeneous substrates at high pH. Formate appears to act as a sacrificial substrate that protects by competing with the endogenous histidine residue for reaction with the bound oxidant, or that repairs the damage by reducing the histidyl radical intermediate. The same is likely also true of NADH.  相似文献   

6.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

7.
W F Beyer  I Fridovich 《Biochemistry》1987,26(5):1251-1257
The iron-containing superoxide dismutase from Escherichia coli is inactivated by H2O2 to a limit of approximately 90%. When corrected for the H2O2-resistant portion, this inactivation was first order with respect to residual activity and exhibited a pseudo-first-order rate constant of 0.066 min-1 at 25 degrees C in 0.24 mM H2O2 at pH 7.8. The superoxide dismutase activity remaining after treatment with H2O2 differed from the activity of the native enzyme with respect to heat stability, inhibition by azide, and inactivation by light in the presence of rose bengal and by N-bromosuccinimide. The native and the H2O2-modified enzymes were indistinguishable by electrophoresis on polyacrylamide gels. Inactivation of the enzyme by H2O2 was accompanied by loss of tryptophan and some loss of iron, but there was no detectable loss of histidine or of other amino acids. H2O2 treatment caused changes in the optical spectrum of the enzyme. Inactivation of the enzyme by H2O2 depends upon the iron at the active site. Thus, the apoenzyme and the manganese-substituted enzyme were unaffected by H2O2. We conclude that reaction of H2O2 with the iron at the active site generates a potent oxidant capable of attacking tryptophan residues. A mechanism is proposed.  相似文献   

8.
The activity of erythrocyte cytosolic superoxide dismutase from rat, bovine, man and duck was considerably increased when measured after preparation or incubation in media pretreated with negative air ions (mostly superoxide) from electroeffluvial ion generator. 0.5–1.0 μM H2O2 was found in incubation medium after treatment with air ions. The stimulatory effect of air ions on superoxide dismutase activity was mimicked by addition of 0.5–6 μM H2O2. The primary physicochemical mechanism of beneficial biological action of negative air ions is suggested to be related to the stimulation of superoxide dismutase activity by micromolar concentrations of H2O2.  相似文献   

9.
Kim YH  Lee Y  Kim S  Yeom J  Yeom S  Seok Kim B  Oh S  Park S  Jeon CO  Park W 《Proteomics》2006,6(23):6181-6193
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm conditions than under planktonic conditions. An analysis of their growth phase-dependent gene expression indicated that a high level of the sodC expression occurred during the stationary phase and that the expression of the tpx gene was strongly induced only during the exponential growth phase. Exogenous hydrogen peroxide reduced the aerobic growth of the STEC sodC and tpx mutants by more than that of their parental strain. The two mutants also displayed significant reductions in their attachment to both biotic (HT-29 epithelial cell) and abiotic surfaces (polystyrene and polyvinyl chloride microplates) during static aerobic growth. However, the growth rates of both wild-type and mutants were similar under aerobic growth conditions. The formation of an STEC biofilm was only observed with the wild-type STEC cells in glass capillary tubes under continuous flow-culture conditions compared with the STEC sodC and tpx mutants. To the best of our knowledge, this is the first mutational study to show the contribution of sodC and tpx gene products to the formation of an E. coli O157:H7 biofilm. These results also suggest that these biofilms are physiologically heterogeneous and that oxidative stress defenses in both the exponential and stationary growth stages play important roles in the formation of STEC biofilms.  相似文献   

10.
Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300 pmol H2O2·min−1·mg protein−1 when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23 pmol H2O2·min−1·mg protein−1), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.  相似文献   

11.
12.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

13.
The effect of hydrogen peroxide on the activities of catalase and superoxide dismutase (SOD) in S. cerevisiae has been studied under different experimental conditions: various H2O2 concentrations, time exposures, yeast cell densities and media for stress induction. The yeast treatment with 0.25–0.50 mM H2O2 led to an increase in catalase activity by 2–3-fold. At the same time, hydrogen peroxide caused an elevation by 1.6-fold or no increase in SOD activity dependently on conditions used. This effect was cancelled by cycloheximide, an inhibitor of protein synthesis in eukaryotes. Weak elevation of catalase and SOD activities in cells treated with 0.25–0.50 mM H2O2 found in this study does not correspond to high level of synthesis of the respective enzyme molecules observed earlier by others. It is well known that exposure of microorganisms to low sublethal concentrations of hydrogen peroxide leads to the acquisition of cellular resistance to a subsequent lethal oxidative stress. Hence, it makes possible to suggest that S. cerevisiae cells treated with low sublethal doses of hydrogen peroxide accumulate non-active stress-protectant molecules of catalase and SOD to survive further lethal oxidant concentrations.  相似文献   

14.
Cell-free extracts of Campylobacter sputorum subspecies bubulus contained superoxide dismutase. The enzyme was located in the cytoplasmic fraction and insensitive to cyanide. After centrifuging a cell-free extract at 144000 x g for 1.5 h the total activity in the supernatant fraction was threefold higher than in the crude cell-free extract. The pellet fraction thus obtained was shown to have a lowering effect on superoxide dismutase activities from different sources in the assay method used here. C. sputorum responded to a raised oxygen tension in the culture by an increase in the superoxide dismutase activity. The ability to produce superoxide anion radicals (O2 -·) during oxidation of formate and lactate was demonstrated. Furthermore C. sputorum was found to produce H2O2 while oxidizing formate. In experiments in which the reduction of cytochrome c by formate was followed, step-wise kinetics were observed. One of the steady states then obtained was attributed to the oxidizing action of H2O2, because it was abolished by the addition of catalase and lengthened by H2O2 added in addition to H2O2 formed as a product of formate oxidation. An overall reaction for formate oxidation by C. sputorum is discussed.Abbreviations O2 -· superoxide anion radical - NBT p-nitro blue tetrazolium chloride - ABTS 2,2-azino-di-[3-ethylbenzthiazoline sulfonate (6)] - TL-medium tryptose-lactate medium  相似文献   

15.
Summary An Escherichia coli K-12 strain deleted for sodA and sodB (manganese and iron superoxide dismulases) was constructed and characterized by Southern blotting, enzyme assays, and physiological analyses. The sod deletion strain was used to clone the iron superoxide dismutase gene of Legionella pneumophila by complementation to paraquat resistance.  相似文献   

16.
摘要: 【目的】确定rmlB 基因在大肠杆菌( O2: K1) L-型鼠李糖合成中的作用。【方法】将基因rmlB 进行原核表达并测定酶活; 用同源重组的方法将rmlB 基因敲除,分析表型变化,并运用质谱,以及核磁共振等手段分析脂多糖O 侧链的结构,以确定rmlB 在O 抗原合成中的作用。【结果】成功对rmlB 基因进行了表达并测定了重组蛋白的酶活,确定蛋白RmlB 具有dTDP-D-glucose 4,6-dehydratase 活性。成功构建了rmlB 基因缺失突变株,对突变株进行表型分析发现突变株的表型与野生株相比无变化。对突变株分析发现突变株中的O抗原仍含有L-型鼠李糖,说明在该菌株中可能存在RmlB 的同功能酶或者存在其它的L-型鼠李糖合成途径。【结论】rmlB 基因编码的蛋白具有dTDP-D-glucose 4,6-dehydratase 活性但此基因对于L-型鼠李糖的合成不是必需的。  相似文献   

17.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   

18.
Algal cells have developed different strategies to cope with the common environmentally promoted generation of H(2)O(2), which include induction of catalase (CAT) and ascorbate peroxidase (APX), massive H(2)O(2) release in seawater, and synthesis of volatile halocarbons by specific peroxidases. The antioxidant adaptability of the economically important carrageenophyte Kappaphycus alvarezii (Doty) Doty (Gigartinales: Rhodophyta) was tested here against exposure to clofibrate (CFB), a known promoter of peroxisomal beta-oxidation in mammals and plants. Possibly as a consequence of CFB-induced H2O2 peroxisomal production, the maximum concentration of H(2)O(2) in the seawater of red algae cultures was found to occur (120+/-17 min) after the addition of CFB, which was followed by a significant decrease in the photosynthetic activity of PSII after 24 h. Interestingly, 4 h after the addition of CFB, the total SOD activity was about 2.5-fold higher than in the control, whereas no significant changes were observed in lipoperoxidation levels (TBARS) or in CAT and APX activities. The two H(2)O(2)-scavenging enzymes were only induced later (after 72 h), whereupon CAT showed a dose-dependent response with increasing concentrations of CFB. A more pronounced increase of TBARS concentration than in the controls was evidenced when a 50 microM Fe(2+/3+) solution (3:2 ratio) was added to CFB-treated cultures, suggesting that the combination of exacerbated H(2)O(2) levels in the seawater-in this work, caused by CFB exposure-and Fenton-reaction catalyst (ferric/ferrous ions), imposes harsh oxidative conditions on algal cultures. The bulk of data suggests that K. alvarezii possesses little ability to promptly induce CAT and APX compared to the immediately responsive antioxidant enzyme SOD and, to avoid harmful accumulation of H(2)O(2), the red alga presumably releases H(2)O(2) into the surrounding medium as an alternative mechanism.  相似文献   

19.
A mouse monoclonal antibody specific for the R3 lipopolysaccharide core type of Escherichia coli was used to determine the core type of E. coli O157:H7 and other non-O157 verotoxin-producing E. coli strains. Lipopolysaccharide extracts from 28 clinical isolates were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting and all were found to have the R3 core. None of the core lipopolysaccharide from the strains tested reacted with the control R1 and R2 specific monoclonal antibodies. A common core type between all the verotoxin-producing E. coli strains tested may be significant when considering the immune response to these bacteria, and to the receptor for the VT bacteriophage.  相似文献   

20.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号