首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its beta-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2 beta. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2 beta by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2 beta labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2 beta was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

2.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its β-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2β. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2β by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2β labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2β was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

3.
Yuryev A  Wennogle LP 《Genomics》2003,81(2):112-125
We have performed an exhaustive unbiased yeast two-hybrid analysis to identify interaction partners of two human Raf kinase isoforms, A-Raf and C-Raf, using their N-terminal regulatory domain as "bait." A total of 20 different human proteins were found to interact with Raf isoforms. Several of these interactions were novel and an extensive bioinformatics evaluation was performed for each. The novel putative interactions include a signalosome component, TOPK/PBK kinase, and two new putative protein phosphatases. The cysteine-rich zinc-binding domain (CRD) of Raf was found to interact with all 20 proteins and to achieve isoform-specific interactions. Since similar putative CRDs are present in a variety of protein serine-threonine kinases, the data suggest that the CRD may function as a major protein-protein interaction domain of these kinases. We propose possible functional consequences of these novel Raf interactions.  相似文献   

4.
The substrate specificity of protein kinase C was studied and compared with that of cyclic AMP-dependent protein kinase (protein kinase A) by using bovine brain myelin basic protein as a model substrate. This basic protein was phosphorylated at multiple sites by both of these protein kinases. In this analysis, the basic protein was thoroughly phosphorylated in vitro with [gamma-32P]ATP and each protein kinase, and then digested with trypsin. The resulting radioactive phosphopeptides were isolated by gel filtration followed by high performance liquid chromatography on a reverse-phase column. Subsequent amino acid analysis and/or sequential Edman degradation of the purified phosphopeptides, together with the known primary sequence of this protein, revealed that Ser-46 and Ser-151 were specifically phosphorylated by protein kinase C, whereas Thr-34 and Ser-115 were phosphorylated preferentially by protein kinase A. Both kinases reacted with Ser-8, Ser-11, Ser-55, Ser-110, Ser-132, and Ser-161 at various reaction velocities. Contrary to protein kinase A, protein kinase C appears to react preferentially with seryl residues that are located at the amino-terminal side close to lysine or arginine. The seryl residues that are phosphorylated commonly by these two protein kinases have basic amino acids at both the amino- and carboxyl-terminal sides. These results provide some clues to understanding the rationale that these kinases may show different but sometimes similar functions depending on the structure of target phosphate acceptor proteins.  相似文献   

5.
Protein-tyrosine kinases are known regulators of cell division that have been implicated in the onset of a variety of malignancies. They act through cellular signaling proteins that bind to specific autophosphorylation sites. To find out whether these autophosphorylation sites can be used to identify downstream signaling proteins, synthetic peptides based on an autophosphorylation site in the colony-stimulating factor-1 (CSF-1) receptor were linked to agarose beads and incubated with lysates from macrophages. Bound proteins were analyzed by MS, leading to the identification of both known and novel CSF-1 receptor-interacting proteins. The approach presented here can be applied to phosphorylation sites in a wide variety of proteins. It will lead to the identification of novel protein-protein interactions and provide new insights into the mechanics of signal transduction. Novel protein-protein interactions may provide useful targets for the development of drugs that interfere with the activation of signaling cascades used by protein-tyrosine kinases to turn on cell division.  相似文献   

6.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

7.

Background

Cell proliferation is a hallmark of cancer and depends on complex signaling networks that are chiefly supported by protein kinase activities. Therapeutic strategies have been used to target specific kinases but new methods are required to identify combined targets and improve treatment. Here, we propose a small interfering RNA genetic screen and an integrative approach to identify kinase networks involved in the proliferation of cancer cells.

Results

The functional siRNA screen of 714 kinases in HeLa cells identified 91 kinases implicated in the regulation of cell growth, most of them never being reported in previous whole-genome siRNA screens. Based on gene ontology annotations, we have further discriminated between two classes of kinases that, when suppressed, result in alterations of the mitotic index and provoke cell-cycle arrest. Extinguished kinases that lead to a low mitotic index mostly include kinases implicated in cytosolic signaling. In contrast, extinguished kinases that result in a high mitotic index mostly include kinases implicated in cell division. By mapping hit kinases in the PhosphPOINT phosphoprotein database, we generated scale-free networks consisting of 449 and 661 protein-protein interactions for kinases from low MI and high MI groups, respectively. Further analyses of the kinase interactomes revealed specific modules such as FER- and CRKL-containing modules that connect three members of the epidermal growth factor receptor (EGFR) family, suggesting a tight control of the mitogenic EGF-dependent pathway. Based on experimental studies, we confirm the involvement of these two kinases in the regulation of tumor cell growth.

Conclusion

Based on a combined approach of large kinome-wide siRNA screens and ontology annotations, our study identifies for the first time two kinase groups differentially implicated in the control of cell proliferation. We further demonstrate that integrative analysis of the kinase interactome provides key information which can be used to facilitate or optimize target design for new therapeutic strategies. The complete list of protein-protein interactions from the two functional kinase groups will provide a useful database for future investigations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1169) contains supplementary material, which is available to authorized users.  相似文献   

8.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

9.
The EGFR (epidermal growth factor receptor)/ErbB/HER (human EGFR) family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signalling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of three members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4), in different molecular contexts: monomer against dimer and wild-type against mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases, key subdomain motions are co-ordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating bond network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating bond network. The present molecular dynamics study reveals a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck.  相似文献   

10.
11.
Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.  相似文献   

12.
A central theme in intracellular signaling is the regulatable interaction of proteins via the binding of specialized domains on one protein to short linear sequences on other molecules. The capability of these short sequences to mediate the required specificity and affinity for signal transduction allows for the rational design of peptide-based modulators of specific protein-protein interactions. Such inhibitors are valuable tools for elucidating the role of these interactions in cellular physiology and in targeting such interactions for potential therapeutic intervention. This approach is exemplified by the study of the role of phosphorylation of specific sites on signaling proteins. However, the difficulty of introducing large hydrophilic molecules such as phosphopeptides into cells has been a major drawback in this area. This review describes the application of recently developed cell-permeant peptide vectors in the introduction of biologically active peptides into cells, with particular emphasis on the antennapedia/penetratin, TAT, and signal-peptide based sequences. In addition, the modification of such peptides to increase uptake efficiency and affinity for their targets is discussed. Finally, the use of cell-permeant phosphopeptides to both inhibit and stimulate intracellular signaling mechanisms is described, by reference to the PLCgamma, Grb2, and PI-3 kinase pathways.  相似文献   

13.
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.  相似文献   

14.
Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL type handle. The results show that phosphopeptides tethered to a flexible solid support bind with high affinity and specificity to ILKAP, which is pulled down from lysates of cells transfected with ILKAP cDNA. Phosphorylation on Ser or Thr residues is important for binding of ILKAP, but sequences around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology.  相似文献   

15.
The magnitude and duration of signalling through mitogen- and stress-activated kinases are critical determinants of biological effect. This reflects a balance between the activities of upstream activators and a complex regulatory network of protein phosphatases. These mitogen-activated protein kinase phosphatases include both dual-specificity (threonine/tyrosine) and tyrosine-specific enzymes, and recent evidence suggests that a single mitogen-activated protein kinase isoform may be acted upon by both classes of protein phosphatase. In both cases, substrate selectivity is determined by specific protein-protein interactions mediated through noncatalytic amino-terminal mitogen-activated protein kinase binding domains. Future challenges include the determination of exactly how this network of protein phosphatases interacts selectively with mitogen-activated protein kinase signalling complexes to achieve precise regulation of these key pathways in mammalian cells.  相似文献   

16.
Depolarization of synaptosomes is known to cause a calcium-dependent increase in the phosphorylation of a number of proteins. It was the aim of this study to determine which protein kinases are activated on depolarization by analyzing the incorporation of 32Pi into synaptosomal phosphoproteins and phosphopeptides. The following well-characterized phosphoproteins were chosen for study: phosphoprotein "87K," synapsin Ia and Ib, phosphoproteins IIIa and IIIb, the catalytic subunits of calmodulin kinase II, and the B-50 protein. Each was initially identified as a phosphoprotein in lysed synaptosomes after incubation with [gamma-32P]ATP. Mobility on two-dimensional polyacrylamide gels and phosphorylation by specific protein kinases were the primary criteria used for identification. A technique was developed that allowed simultaneous analysis of the phosphopeptides derived from all of these proteins. Phosphopeptides were characterized in lysed synaptosomes after activating cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases in the presence of [gamma-32P]ATP. Phosphoproteins labelled in intact synaptosomes after incubation with 32Pi were then compared with those seen after ATP-labelling of lysed synaptosomes. As expected from previous work, phosphoprotein "87K," and synapsin Ia and Ib were labelled, but for the first time, phosphoproteins IIIa, IIIb, and the B-50 protein were identified as being labelled in intact synaptosomes; the calmodulin kinase II subunits were hardly phosphorylated. From a comparison of the phosphopeptide profiles it was found that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases are all active in intact synaptosomes and their activity is dependent on extrasynaptosomal calcium. The activation of cyclic AMP-stimulated protein kinases in intact synaptosomes was confirmed by the addition of dibutyryl cyclic AMP and theophylline which specifically increased the labelling of phosphopeptides in synapsin Ia and Ib and in phosphoproteins IIIa and IIIb. On depolarization of intact synaptosomes, a number of phosphopeptides showed increased labelling and the pattern suggested that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases were all activated. No new peptides were phosphorylated, suggesting that depolarization simply increased the activity of already active protein kinases and that there was no depolarization-specific increase in protein phosphorylation.  相似文献   

17.
Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) is a member of the class II PI-3 kinases, defined by the presence of a second C2 domain at their C termini. The cellular functions of the class II enzymes are incompletely understood, though they have been implicated in receptor activation pathways initiated by epidermal growth factor, insulin, and chemokines. PI3K-C2alpha was recently found to be localized to clathrin-coated membranes in the trans-Golgi network and at endocytic sites on the plasma membrane. Further, a specific binding site was identified for clathrin on the N terminus of PI3K-C2alpha, whose occupancy resulted in lipid kinase activation. Expression of PI3K-C2alpha in cells dramatically affected clathrin distribution and function in cells, leading to accumulation of intracellular clathrin-coated structures, which are visualized here at the ultrastructural level, and inhibition of clathrin-mediated transport from both the plasma membrane and the trans-Golgi network. In this study we have demonstrated that the isolated clathrin binding domain of PI3K-C2alpha can drive clathrin lattice assembly and that both it and the lipid kinase activity of the protein can independently modulate clathrin distribution and function when expressed in cells. Together, these results suggest that PI3K-C2alpha employs both protein-protein interaction and localized production of 3-phosphoinositides to affect clathrin dynamics at sites of membrane budding and targeting.  相似文献   

18.
The Ser/Thr protein kinases fall into three major subgroups, pro-directed, basophilic, and acidophilic, on the basis of the types of substrate sequences that they preferred. Despite many phosphoproteomics efforts that have been taken for global profiling of phosphopeptides, methodologies focusing on analyzing a particular type of kinase substrates have seldom been reported. Selective enrichment of phosphopeptides from basophilic kinase substrates is difficult because basophilic motifs are cleaved by trypsin during digestion. In this study, we develop a negative enrichment strategy to enhance the identification of basophilic kinase substrates. This method is based on an observation that high pH strong anion exchange (SAX) chromatography can separate tryptic phosphopeptides according to the number of acidic amino acidic residues that they have. Thus, SAX was applied to deplete acidic phosphopeptides from the phosphopeptide mixture, which improved the coverage for the detection of basophilic kinase substrates. The SAX depletion approach was further combined with online SCX-RP separation for large-scale analysis of mouse liver phosphoproteome, which resulted in the identification of 6944 phosphorylated sites. It was found that motifs associated with basophilic kinases prevail for these identified phosphorylated sites.  相似文献   

19.
Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.  相似文献   

20.
We have previously shown that 2,3-diphosphoglycerate (2,3-DPG) inhibits the phosphorylation of erythrocyte membrane cytoskeletal proteins by endogenous casein kinases. Here, we report that 2,3-DPG stimulates the phosphorylation of protein 4.1 by protein kinase C. Studies with red cell membrane preparations showed that while the phosphorylation of most of the membrane proteins by endogenous membrane-bound kinases and purified kinase C was inhibited by 2,3-DPG, the phosphorylation of protein 4.1 was slightly enhanced by the metabolite. The effect of 2,3-DPG was further examined using purified protein 4.1 preparations. Our results indicate that 2,3-DPG stimulates both the rate and the extent of phosphorylation of purified protein 4.1 by kinase C. The amount of phosphate incorporated was found to double to 2 mol of phosphate per mole of protein 4.1 in the presence of 10 mM 2,3-DPG. The increase in phosphorylation was distributed over all phosphorylation sites as revealed by an analysis of the labeling patterns of phosphopeptides resolved by high performance liquid chromatography, but a significantly higher incorporation was detected in two of the phosphopeptides. The stimulatory effect of 2,3-DPG on the phosphorylation of protein 4.1 was observed only with kinase C. Phosphorylation by the cytosolic erythrocyte casein kinase and the cyclic AMP-dependent protein kinase was inhibited by 2,3-DPG. Moreover, the stimulatory effect of 2,3-DPG seemed to be unique to the phosphorylation of protein 4.1 since a similar effect had not been observed with other protein kinase C substrates. Our results suggest that 2,3-DPG may play an important role in the regulation of cytoskeletal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号