共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis 下载免费PDF全文
Holger Stephan Claire Concannon Elisabeth Kremmer Michael P. Carty Heinz-Peter Nasheuer 《Nucleic acids research》2009,37(18):6028-6041
The human single-stranded DNA-binding protein, replication protein A (RPA), is regulated by the N-terminal phosphorylation of its 32-kDa subunit, RPA2. RPA2 is hyperphosphorylated in response to various DNA-damaging agents and also phosphorylated in a cell-cycle-dependent manner during S- and M-phase, primarily at two CDK consensus sites, S23 and S29. Here we generated two monoclonal phospho-specific antibodies directed against these CDK sites. These phospho-specific RPA2-(P)-S23 and RPA2-(P)-S29 antibodies recognized mitotically phosphorylated RPA2 with high specificity. In addition, the RPA2-(P)-S23 antibody recognized the S-phase-specific phosphorylation of RPA2, suggesting that during S-phase only S23 is phosphorylated, whereas during M-phase both CDK sites, S23 and S29, are phosphorylated. Immunofluorescence microscopy revealed that the mitotic phosphorylation of RPA2 starts at the onset of mitosis, and dephosphorylation occurs during late cytokinesis. In mitotic cells treated with ionizing radiation (IR), we observed a rapid hyperphosphorylation of RPA2 in addition to its mitotic phosphorylation at S23 and S29, associated with a significant change in the subcellular localization of RPA. Our data also indicate that the RPA2 hyperphosphorylation in response to IR is facilitated by the activity of both ATM and DNA-PK, and is associated with activation of the Chk2 pathway. 相似文献
3.
Anne M. Dickson Yulia Krasikova Pavel Pestryakov Olga Lavrik Marc S. Wold 《Nucleic acids research》2009,37(7):2313-2326
Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2–DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions. 相似文献
4.
Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage. We found that addition of multiple negative charges to the N-terminal phosphorylation domain also caused a significant decrease in the ability of a mutant form of RPA to destabilize double-stranded (ds) DNA. Kinetic studies suggested that the addition of negative charges to the N-terminal phosphorylation domain caused defects in both complex formation (nucleation) and subsequent destabilization of dsDNA by RPA. We conclude that the N-terminal phosphorylation domain modulates RPA interactions with dsDNA. Similar changes in DNA interactions were observed with a mutant form of RPA in which the N-terminal domain of the 70-kDa subunit was deleted. This suggested a functional link between the N-terminal domains of the 70- and 32-kDa subunits of RPA. NMR experiments provided evidence for a direct interaction between the N-terminal domain of the 70-kDa subunit and the negatively charged N-terminal phosphorylation domain of RPA32. These findings suggest that phosphorylation causes a conformational change in the RPA complex that regulates RPA function. 相似文献
5.
Replication protein A (RPA) is a trimeric single-stranded DNA (ssDNA)-binding complex of eukaryotic cells that plays an important role in DNA metabolism by stabilising single-stranded regions of DNA. The functionally important binding activity towards ssDNA is mainly localised on the large subunit, RPA70, whereas the middle subunit, RPA32, appears to have a regulatory function. It has been shown previously that RPA32 is phosphorylated both during the S-phase of a normal cell cycle and in response to DNA damage. In this study we demonstrate that phosphorylation of RPA32 is rapidly induced during apoptotic cell death of Jurkat T-lymphocytes, resulting in a hyperphosphorylated form with reduced electrophoretic mobility. In contrast, the large subunit of RPA is neither modified nor cleaved during apoptosis. Phosphorylation of RPA32 begins in parallel to the degradation of DNA to high molecular weight fragments, and slowly continues until late apoptosis. Experiments with specific kinase inhibitors indicate that RPA32 hyperphosphorylation requires the activities of DNA-dependent protein kinase and of a cyclin-dependent protein kinase. Interestingly, the hyperphosphorylated, but not the less phosphorylated forms of RPA32, sediments independently from the trimeric complex in sucrose gradients under high ionic strength, and is not bound to the complex in immunoprecipitation assays. 相似文献
6.
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes. RPA is composed of three subunits of 70, 32, and 14 kDa. The N-terminal domain of the 70-kDa subunit (RPA70) has weak DNA binding activity, interacts with proteins, and is involved in cellular DNA damage response. To define the mechanism by which this domain regulates RPA function, we analyzed the function of RPA forms containing a deletion of the N terminus of RPA70 and mutations in the phosphorylation domain of RPA (N-terminal 40 amino acids of the 32-kDa subunit). Although each individual mutation has only modest effects on RPA activity, a form combining both phosphorylation mimetic mutations and a deletion of the N-terminal domain of RPA70 was found to have dramatically altered activity. This combined mutant was defective in binding to short single-stranded DNA oligonucleotides and had altered interactions with proteins that bind to the DNA-binding core of RPA70. These results indicate that in the absence of the N-terminal domain of RPA70, a negatively charged phosphorylation domain disrupts the activity of the core DNA-binding domain of RPA. We conclude that the N-terminal domain of RPA70 functions by interacting with the phosphorylation domain of the 32-kDa subunit and blocking undesirable interactions with the core DNA-binding domain of RPA. These studies indicate that RPA conformation is important for regulating RPA-DNA and RPA-protein interactions. 相似文献
7.
Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle. 相似文献
8.
The 32-kilodalton subunit of replication protein A interacts with menin,the product of the MEN1 tumor suppressor gene 下载免费PDF全文
Sukhodolets KE Hickman AB Agarwal SK Sukhodolets MV Obungu VH Novotny EA Crabtree JS Chandrasekharappa SC Collins FS Spiegel AM Burns AL Marx SJ 《Molecular and cellular biology》2003,23(2):493-509
Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. 相似文献
9.
René F.M. de Coo Paul A.L. Buddiger Hubert J.M. Smeets Bernard A. van Oost 《Mammalian genome》1999,10(1):49-53
The genomic organization of the human 51-kDa subunit gene (NDUFV1) on human Chromosome (Chr) 11q13 was determined. The NDUFV1
gene consists of 10 exons. Exon 1 encodes for the 20-amino-acids-long import sequence, and exon 1 through 10 codes for the
444-amino-acids-long mature protein. The protein sequence is highly conserved between human and bovine. Northern blotting
analysis showed that the NDUFV1 gene expression varies widely among tissues and that in testis a unique mRNA species is present.
In comparison with the other complex I flavoproteins, the expression of the 51-kDa gene in pancreatic tissue is high.
Received: 5 May 1998 / Accepted: 28 August 1998 相似文献
10.
《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1996,1305(3):120-124
A clone isolated from a Rhipicephalus appendiculatus salivary gland cDNA library encodes a homologue of the 70-kDa subunit of the mammalian Ku protein, an ATP-dependent DNA helicase. The tick homologue appears to be more closely related to the mammalian protein than to the only other p70 homologue reported in arthropods, the inverted repeat binding protein (IRBP) in the fruitfly, Drosophila melanogaster. 相似文献
11.
12.
DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. 总被引:3,自引:3,他引:3 下载免费PDF全文
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed. 相似文献
13.
K Treuner M Findeisen U Strausfeld R Knippers 《The Journal of biological chemistry》1999,274(22):15556-15561
Replication protein A (RPA), the major eukaryotic single-strand specific DNA binding protein, consists of three subunits, RPA70, RPA32, and RPA14. The middle subunit, RPA32, is phosphorylated in a cell cycle-dependent manner. RPA occurs in two nuclear compartments, bound to chromatin or free in the nucleosol. We show here that the chromatin-associated fraction of RPA contains the phosphorylated forms of RPA32. Treatment of chromatin with 0.4 M NaCl releases bound RPA and causes a separation of the large and the phosphorylated middle RPA subunit. Unmodified RPA in the nucleosolic fraction remains perfectly stable under identical conditions. Phosphorylation is most likely an important determinant of RPA desintegration because dialysis from 0.4 to 0.1 NaCl causes the reformation of trimeric RPA only under dephosphorylating conditions. Biochemical studies with isolated Cyclin-dependent protein kinases showed that cyclin A/CDK1 and cyclin B/CDK1, but not cyclin E/CDK2, can phosphorylate human recombinant RPA in vitro. However, only a small fraction of in vitro phosphorylated RPA desintegrated, suggesting that phosphorylation may be one, but probably not the only, determinant affecting subunit interaction. We speculate that phosphorylation and changes in subunit interaction are required for the proposed role of RPA during the polymerase switch at replication forks. 相似文献
14.
The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin 总被引:1,自引:0,他引:1
The primary structure of a 22-kDa protein which was isolated during the purification of bovine skin dermatan sulfate proteoglycan is described. The uronate-rich fraction from DEAE-Sepharose chromatography of a 7.8 M urea extract of bovine fetal skin was subjected to gel filtration on Sepharose CL-6B in 4 M guanidine HCl. A prominent component of mass 22 kDa was separated from the proteoglycan and further purified on octyl-Sepharose. The primary structure of this component was determined and found to contain three repeat regions. Each of the three sections contains a similar pattern of looped disulfide bonds. A six-amino acid consensus sequence, Asp-Arg-Glx-Trp-Asn/Gln/Lys-Phe/Tyr, is found in each loop. This domain may be involved in associations of the molecule with other extracellular matrix components. 相似文献
15.
16.
17.
The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein 下载免费PDF全文
Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem–loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay. 相似文献
18.
The complete primary structure of the human snRNP E protein. 总被引:4,自引:2,他引:4
D R Stanford M Kehl C A Perry E L Holicky S E Harvey A M Rohleder K Rehder Jr R Luhrmann E D Wieben 《Nucleic acids research》1988,16(22):10593-10605
The snRNP E protein is one of four "core" proteins associated with the snRNAs of the U family (U1,U2,U4,U5, and U6). Screening of a human teratoma cDNA library with a partial cDNA for a human autoimmune antigen resulted in the isolation of a cDNA clone containing the entire coding region of this snRNP core protein. Comparison of the 5' end of this cDNA with the sequences of two processed pseudogenes and primer extension data suggest that the cDNA is nearly full length. The longest open reading frame in this clone codes for a basic 92 amino acid protein which is in perfect agreement with amino acid sequence data obtained from purified E protein. The predicted sequence of this protein reveals no extensive similarity to other snRNP proteins, but contains regions of similarity to a eukaryotic ribosomal protein. 相似文献
19.
The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding 总被引:1,自引:3,他引:1 下载免费PDF全文
Daughdrill GW Ackerman J Isern NG Botuyan MV Arrowsmith C Wold MS Lowry DF 《Nucleic acids research》2001,29(15):3270-3276
Replication protein A (RPA) is a heterotrimeric, multi-functional protein that binds single-stranded DNA (ssDNA) and is essential for eukaryotic DNA metabolism. Using heteronuclear NMR methods we have investigated the domain interactions and ssDNA binding of a fragment from the 70 kDa subunit of human RPA (hRPA70). This fragment contains an N-terminal domain (NTD), which is important for hRPA70–protein interactions, connected to a ssDNA-binding domain (SSB1) by a flexible linker (hRPA701–326). Correlation analysis of the amide 1H and 15N chemical shifts was used to compare the structure of the NTD and SSB1 in hRPA701–326 with two smaller fragments that corresponded to the individual domains. High correlation coefficients verified that the NTD and SSB1 maintained their structures in hRPA701–326, indicating weak interdomain coupling. Weak interdomain coupling was also suggested by a comparison of the transverse relaxation rates for hRPA701–326 and one of the smaller hRPA70 fragments containing the NTD and the flexible linker (hRPA701–168). We also examined the structure of hRPA701–326 after addition of three different ssDNA substrates. Each of these substrates induced specific amide 1H and/or 15N chemical shift changes in both the NTD and SSB1. The NTD and SSB1 have similar topologies, leading to the possibility that ssDNA binding induced the chemical shift changes observed for the NTD. To test this hypothesis we monitored the amide 1H and 15N chemical shift changes of hRPA701–168 after addition of ssDNA. The same amide 1H and 15N chemical shift changes were observed for the NTD in hRPA701–168 and hRPA701–326. The NTD residues with the largest amide 1H and/or 15N chemical shift changes were localized to a basic cleft that is important for hRPA70–protein interactions. Based on this relationship, and other available data, we propose a model where binding between the NTD and ssDNA interferes with hRPA70–protein interactions. 相似文献
20.
Taneja P Boche I Hartmann H Nasheuer HP Grosse F Fanning E Weisshart K 《FEBS letters》2007,581(21):3973-3978
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end. 相似文献