首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomes of plants, like virtually all other eukaryotic organisms, harbor a diverse array of mobile elements, or transposons. In terms of numbers, the predominant type of transposons in many plants is the miniature inverted-repeat transposable element (MITE). There are three archetypal MITEs, known as Tourist, Stowaway, and Emigrant, each of which can be defined by a specific terminal inverted-repeat (TIR) sequence signature. Although their presence was known for over a decade, only recently have open reading frames (ORFs) been identified that correspond to putative transposases for each of the archetypes. We have identified two Stowaway elements that encode a putative transposase and are similar to members of the previously characterized IS630-Tc1-mariner superfamily. In this report, we provide a high-resolution phylogenetic analysis of the evolutionary relationship between Stowaway, Emigrant, and members of the IS630-Tc1-mariner superfamily. We show that although Emigrant is closely related to the pogo-like family of elements, Stowaway may represent a novel family. Integration of our results with previously published data leads to the conclusion that the three main types of MITEs have different evolutionary histories despite similarity in structure.  相似文献   

2.
Biedler JK  Shao H  Tu Z 《Genetics》2007,177(4):2553-2558
ITmD37E, a unique class II transposable element (TE) with an ancient origin, appears to have been involved in multiple horizontal transfers in mosquitoes as ITmD37E sequences from 10 mosquito species of five genera share high nucleotide (nt) identities. For example, ITmD37E sequences from Aedes aegypti and Anopheles gambiae, which have an estimated common ancestor of 145-200 million years ago, display 92% nt identity. The comparison of ITmD37E and host mosquito phylogenies shows a lack of congruence. The wide distribution of conserved ITmD37Es in mosquitoes and the presence of intact copies suggest that this element may have been recently active.  相似文献   

3.
《Gene》1997,195(2):257-266
Three insertion sequences were characterized from the widely-used cyanobacterium Synechocystis PCC6803. They all harbored a putative transposase sequence flanked by two imperfect inverted repeats, seemed to have duplicated their target insertion site and occurred as multiple copies in the host genome. They exhibited no obvious homology with any other cyanobacterial ISs and were termed IS5S (871 bp), IS4S (1299 bp) and ISS1987 (949 bp) because they were, respectively, homologous to IS5- and IS4-bacterial elements, and to several members of the IS630-Tc1-mariner superfamily of IS elements occurring in a wide range of hosts. This suggests that these IS-elements were spread through horizontal transfer between evolutionary distant organisms. Three IS5S-copies were isolated as a rescue insertion into a replicating plasmid (IS5Sa), or subsequently cloned from a Synechocystis DNA-library probed with IS5Sa (IS5Sb and IS5Sc), and appeared to be almost identical. In the vicinity of IS5Sb, we found the ISS1987 element inserted into the IS4S element. This indicates that the ISS1987 element has been, and could still be, mobile since its transposase sequence is not interrupted with stop codons or translational frameshifts, unlike that which is found in most members of the IS630-Tc1-mariner superfamily of transposable elements.  相似文献   

4.
Russian Journal of Genetics - The IS630/Tc1/mariner superfamily of transposable elements (TE) is one of the most numerous and widespread among DNA transposons. The IS630/Tc1/mariner TE are divided...  相似文献   

5.
6.
Several new families of DNA transposons were identified by computer-assisted searches in a wide range of animal species that includes nematodes, flat worms, mosquitoes, sea squirt, zebrafish, and humans. Many of these elements have coding capacity for transposases, which are related to each other and to those encoded by the IS1016 group of bacterial insertion sequences. Although these transposases display a motif similar to the DDE motif found in many transposases and integrases, they cannot be directly allied to any of the previously described eukaryotic transposases. Other common features of the new eukaryotic and bacterial transposons include similarities in their terminal inverted repeats and 8-bp or 9-bp target-site duplications. Together, these data indicate that these elements belong to a new superfamily of DNA transposons, called Merlin/IS1016, which is common in many eubacterial and animal genomes. We also present evidence that these transposons have been recently active in several animal species. This evidence is particularly strong in the parasitic blood fluke Schistosoma mansoni, in which Merlin is also the first described DNA transposon family.  相似文献   

7.
DD[E/D]-transposases catalyze the multistep reaction of cut-and-paste DNA transposition. Structurally, several DD[E/D]-transposases have been characterized, revealing a multi-domain structure with the catalytic domain possessing the RNase H-like structural motif that brings three catalytic residues (D, D, and E or D) into close proximity for the catalysis. However, the dynamic behavior of DD[E/D]-transposases during transposition remains poorly understood. Here, we analyze the rigidity and flexibility characteristics of two representative DD[E/D]-transposases Mos1 and Sleeping Beauty (SB) using the minimal distance constraint model (mDCM). We find that the catalytic domain of both transposases is globally rigid, with the notable exception of the clamp loop being flexible in the DNA-unbound form. Within this globally rigid structure, the central β-sheet of the RNase H-like motif is much less rigid in comparison to its surrounding α-helices, forming a cage-like structure. The comparison of the original SB transposase to its hyperactive version SB100X reveals the region where the change in flexibility/rigidity correlates with increased activity. This region is found to be within the RNase H-like structural motif and comprise the loop leading from beta-strand B3 to helix H1, helices H1 and H2, which are located on the same side of the central beta-sheet, and the loop between helix H3 and beta-strand B5. We further identify the RKEN214-217DAVQ mutations of the set of hyperactive mutations within the catalytic domain of SB transposase to be the driving factor that induces change in residue-pair rigidity correlations within SB transposase. Given that a signature RNase H-like structural motif is found in DD[E/D]-transposases and, more broadly, in a large superfamily of polynucleotidyl transferases, our results are relevant to these proteins as well.  相似文献   

8.
Sequence similarities exist between terminal inverted repeats (TIRs) of some miniature inverted-repeat transposable element (MITE) families isolated from a wide range of organisms, including plants, insects, and humans, and TIRs of DNA transposons from the pogo family. We present here evidence that one of these MITE families, previously described for Arabidopsis thaliana, is derived from a larger element encoding a putative transposase. We have named this novel class II transposon Lemi1. We show that its putative product is related to transposases of the Tc1/mariner superfamily, being closer to the pogo family. A similar truncated element was found in a tomato DNA sequence, indicating an ancient origin and/or horizontal transfer for this family of elements. These results are reminiscent of those recently reported for the human genome, where other members of the pogo family, named Tiggers, are believed to be responsible for the generation of abundant MITE-like elements in an early primate ancestor. These results further suggest that some MITE families, which are highly reiterated in plant, insect, and human genomes, could have arisen from a similar mechanism, implicating pogo-like elements.  相似文献   

9.
Transposons of the Tc1-mariner superfamily are widespread in eukaryotic genomes. We have isolated the mariner element Vulmar1 from Beta vulgaris L., which is 3909 bp long and bordered by perfect terminal inverted repeats of 32 bp with homology to terminal inverted repeats of transposons from soybean and rice. According to a characteristic amino acid signature, Vulmar1 can be assigned to the DD39D group of mariner transposons. Vulmar1 is flanked by a 5'-TA-3' target site duplication that is typical for mariner transposons. Southern hybridization revealed that mariner-like copies are highly abundant in Beta species, and sequence analysis of 10 transposase fragments from representative species of the four Beta sections revealed an identity between 34% and 100% after conceptual translation. By fluorescent in situ hybridization, Vulmar1 was detected in distal euchromatin as well as in some intercalary and pericentromeric regions of all B. vulgaris chromosomes. In addition, using PCR, we were able to amplify fragments of the transposase gene of En/Spm-like transposons in the genus Beta. En/Spm-like transposase sequences are highly amplified in four Beta sections and showed a considerable degree of conservation (88.5-100%) at the protein level, while the homology to corresponding regions of En/Spm transposons of other plant species ranges from 49.5% to 62.5%. By fluorescent in situ hybridization, En/Spm-like transposon signals of strong intensity were detected on all chromosomes of B. vulgaris.  相似文献   

10.
11.
Y1转座酶关联转座子(Y1ATs)的活性催化位点为一个酪氨酸,能够切割和连接单链DNA,在原核生物分布广泛。为探究Y1转座酶关联转座子在大肠杆菌(Escherichia coli, E. coli)与沙门氏菌(Salmonella enterica, S. ente)基因组中系统进化特性,通过Hmmsearch程序对Y1转座酶关联转座子进行了挖掘分析。结果表明,Y1转座酶关联转座子广泛分布于96.84%大肠杆菌基因组和80.4%沙门氏菌基因组。根据序列比对和蛋白结构域预测将Y1转座酶关联转座子分为10类,均隶属于IS200/IS605超家族,其中11 645个属于IS200家族,4 811个属于IS605家族。IS200家族广泛分布于S. ente基因组中(72.24%),而IS605家族广泛分布于E. coli基因组中(89.38%)。IS200拷贝数以及完整拷贝数显著高于IS605。IS200家族仅含有一个Y1转座酶编码区,而IS605家族含两个开放阅读框,分别编码Y1转座酶和TnpB蛋白。IS200家族的Y1氨基酸序列高度保守(95.3%),而IS605家族的Y1和TnpB具有较高遗传多样性,为研究转座子在原核生物的遗传进化模式提供重要参考。IS200家族具有高度保守的Y1转座酶,且完整拷贝数比例较高,提示该类转座子可能具有转座活性,对其活性的挖掘有利于研制转座子介导的新型高效基因编辑工具。  相似文献   

12.
Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.  相似文献   

13.
Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.  相似文献   

14.
15.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

16.
The eukaryotic Mutator family of transposable elements is widespread in plants. Active or potentially active copies are also found in fungi and protozoans, and sequences related to this family have been detected in metazoans as well. Members of this family are called Mutator-like elements (MULE s). They encode transposases, which contain a region conserved with transposases of the IS256 prokaryotic family, known to harbor a DDE catalytic domain. Different DDE or D34E motifs have been proposed in some groups of eukaryotic MULEs based on primary sequence conservation. On a large number of protein sequences related to, and representative of, all MULE families, we analyzed global conservation, the close environment of different acidic residues and the secondary structure. This allowed us to identify a potential DDE motif that is likely to be homologous to the one in IS256-like transposases. The characteristics of this motif are depicted in each known family of MULEs. Different hypotheses about the evolution of this triad are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
《Gene》1996,174(2):265-271
The present report describes the use of computer analyses to reveal a hobo-like element in the genome of Caenorhabditis elegans. This hobo-like sequence is 3039 bp long, contains two inverted terminal repeats of 25–27 bp and probably does not encoded a functional transposase. Sequence comparisons suggest that each transposase of hobo elements probably has a D(D/S)E motif. Thus the transposases of the hAT superfamily of transposons appear to be close to the other transposases and intregrases.  相似文献   

18.
19.
Barry EG  Witherspoon DJ  Lampe DJ 《Genetics》2004,166(2):823-833
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号