首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of the mouse Usp14 gene, encoding the homolog of yeast deubiquitinating enzyme Ubp6, causes ataxia. Here we show that deletion of the UBP6 gene in Saccharomyces cerevisiae causes sensitivity to a broad range of toxic compounds and antagonizes phenotypic expression and de novo induction of the yeast prion [PSI+], a functionally defective self-perpetuating isoform of the translation termination factor Sup35. Conversely, overexpression of ubiquitin (Ub) increases phenotypic expression and induction of [PSI+] in the wild type cells and suppresses all tested ubp6Delta defects, indicating that they are primarily due to depletion of cellular Ub levels. Several lines of evidence suggest that Ubp6 functions on the proteasome. First, Ub levels in the ubp6Delta cells can be partly restored by proteasome inhibitors, suggesting that deletion of Ubp6 decreases Ub levels by increasing proteasome-dependent degradation of Ub. Second, fluorescence microscopy analysis shows that Ubp6-GFP fusion protein is localized to the nucleus of yeast cell, as are most proteasomes. Third, the N-terminal Ub-like domain, although it is not required for nuclear localization of Ubp6, targets Ubp6 to the proteasome and cannot be functionally replaced by Ub. The human ortholog of Ubp6, USP14, probably plays a similar role in higher eukaryotes, since it fully compensates for ubp6Delta defects and binds to the yeast proteasome. These data link the Ub system to prion expression and propagation and have broad implications for other neuronal inclusion body diseases.  相似文献   

2.
Multiple associated proteins regulate proteasome structure and function   总被引:1,自引:0,他引:1  
We have identified proteins that are abundant in affinity-purified proteasomes, but absent from proteasomes as previously defined because elevated salt concentrations dissociate them during purification. The major components are a deubiquitinating enzyme (Ubp6), a ubiquitin-ligase (Hul5), and an uncharacterized protein (Ecm29). Ecm29 tethers the proteasome core particle to the regulatory particle. Proteasome binding activates Ubp6 300-fold and is mediated by the ubiquitin-like domain of Ubp6, which is required for function in vivo. Ubp6 recognizes the proteasome base and its subunit Rpn1, suggesting that proteasome binding positions Ubp6 proximally to the substrate translocation channel. ubp6Delta mutants exhibit accelerated turnover of ubiquitin, indicating that deubiquitination events catalyzed by Ubp6 prevent translocation of ubiquitin into the proteolytic core particle.  相似文献   

3.
Attachment of ubiquitin to cellular proteins frequently targets them to the 26S proteasome for degradation. In addition, ubiquitination of cell surface proteins stimulates their endocytosis and eventual degradation in the vacuole or lysosome. In the yeast Saccharomyces cerevisiae, ubiquitin is a long-lived protein, so it must be efficiently recycled from the proteolytic intermediates to which it becomes linked. We identified previously a yeast deubiquitinating enzyme, Doa4, that plays a central role in ubiquitin-dependent proteolysis by the proteasome. Biochemical and genetic data suggest that Doa4 action is closely linked to that of the proteasome. Here we provide evidence that Doa4 is required for recycling ubiquitin from ubiquitinated substrates targeted to the proteasome and, surprisingly, to the vacuole as well. In the doa4Delta mutant, ubiquitin is strongly depleted under certain conditions, most notably as cells approach stationary phase. Ubiquitin depletion precedes a striking loss of cell viability in stationary phase doa4Delta cells. This loss of viability and several other defects of doa4Delta cells are rescued by provision of additional ubiquitin. Ubiquitin becomes depleted in the mutant because it is degraded much more rapidly than in wild-type cells. Aberrant ubiquitin degradation can be partially suppressed by mutation of the proteasome or by inactivation of vacuolar proteolysis or endocytosis. We propose that Doa4 helps recycle ubiquitin from both proteasome-bound ubiquitinated intermediates and membrane proteins destined for destruction in the vacuole.  相似文献   

4.
Deubiquitinating enzymes are essential to the ubiquitin (Ub)/26S proteasome system where they release Ub monomers from the primary translation products of poly-Ub and Ub extension genes, recycle Ubs from polyubiquitinated proteins, and reverse the effects of ubiquitination by releasing bound Ubs from individual targets. The Ub-specific proteases (UBPs) are one large family of deubiquitinating enzymes that bear signature cysteine and histidine motifs. Here, we genetically characterize a UBP subfamily in Arabidopsis (Arabidopsis thaliana) encoded by paralogous UBP3 and UBP4 genes. Whereas homozygous ubp3 and ubp4 single mutants do not display obvious phenotypic abnormalities, double-homozygous mutant individuals could not be created due to a defect in pollen development and/or transmission. This pollen defect was rescued with a transgene encoding wild-type UBP3 or UBP4, but not with a transgene encoding an active-site mutant of UBP3, indicating that deubiquitination activity of UBP3/UBP4 is required. Nuclear DNA staining revealed that ubp3 ubp4 pollen often fail to undergo mitosis II, which generates the two sperm cells needed for double fertilization. Substantial changes in vacuolar morphology were also evident in mutant grains at the time of pollen dehiscence, suggesting defects in vacuole and endomembrane organization. Even though some ubp3 ubp4 pollen could germinate in vitro, they failed to fertilize wild-type ovules even in the absence of competing wild-type pollen. These studies provide additional evidence that the Ub/26S proteasome system is important for male gametogenesis in plants and suggest that deubiquitination of one or more targets by UBP3/UBP4 is critical for the development of functional pollen.  相似文献   

5.
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.  相似文献   

6.
7.
Spence J  Gali RR  Dittmar G  Sherman F  Karin M  Finley D 《Cell》2000,102(1):67-76
Ubiquitin is ligated to L28, a component of the large ribosomal subunit, to form the most abundant ubiquitin-protein conjugate in S. cerevisiae. The human ortholog of L28 is also ubiquitinated, indicating that this modification is highly conserved in evolution. During S phase of the yeast cell cycle, L28 is strongly ubiquitinated, while reduced levels of L28 ubiquitination are observed in G1 cells. L28 ubiquitination is inhibited by a Lys63 to Arg substitution in ubiquitin, indicating that L28 is modified by a variant, Lys63-linked multiubiquitin chain. The K63R mutant of ubiquitin displays defects in ribosomal function in vivo and in vitro, including a dramatic sensitivity to translational inhibitors. L28, like other ribosomal proteins, is metabolically stable. Therefore, these data suggest a regulatory role for multiubiquitin chains that is reversible and does not function to target the acceptor protein for degradation.  相似文献   

8.
Retroviral Gag polyprotein precursors are both necessary and sufficient for the assembly and release of virus-like particles (VLPs) from infected cells. It is well established that small Gag-encoded motifs, known as late domains, promote particle release by interacting with components of the cellular endosomal sorting and ubiquitination machinery. The Gag proteins of a number of different retroviruses are ubiquitinated; however, the role of Gag ubiquitination in particle egress remains undefined. In this study, we investigated this question by using a panel of equine infectious anemia virus (EIAV) Gag derivatives bearing the wild-type EIAV late domain, heterologous retroviral late domains or no late domain. Ubiquitin was fused in cis to the C-termini of these Gag polyproteins, and the effects on VLP budding were measured. Remarkably, fusion of ubiquitin to EIAV Gag lacking a late domain (EIAV/DeltaYPDL-Ub) largely rescued VLP release. We also determined the effects of ubiquitin fusion on the sensitivity of particle release to budding inhibitors and to depletion of key endosomal sorting factors. Ubiquitin fusion rendered EIAV/DeltaYPDL-Ub sensitive to depletion of cellular endosomal sorting factors Tsg101 and Alix and to overexpression of dominant-negative fragments of Tsg101 and Alix. These findings demonstrate that ubiquitin can functionally compensate for the absence of a retroviral late domain and provide insights into the host-cell machinery engaged by ubiquitin during particle egress.  相似文献   

9.
Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.  相似文献   

10.
Proteasome assembly utilizes multiple dedicated assembly chaperones and is regulated by signaling pathways that respond to diverse stress conditions. To discover new factors influencing proteasome base assembly, we screened a tiled high-copy yeast genomic library to identify dosage suppressors of a temperature-sensitive proteasome regulatory particle (RP) base mutant. The screen identified negative salt tolerance 1 (Nst1), a protein that when overexpressed specifically suppressed the temperature sensitivity and proteasome-assembly defects of multiple base mutants. Nst1 overexpression reduced cytosolic RP ATPase (Rpt) aggregates in nas6Δ rpn14Δ cells, which lack two RP assembly chaperones. Nst1 is highly polar and predicted to have numerous intrinsically disordered regions, characteristics commonly found in proteins that can segregate into membraneless condensates. In agreement with this, both endogenous and overexpressed Nst1 could form cytosolic puncta that colocalized with processing body (P-body) components. Consistent with the accumulation of translationally inactive mRNAs in P-bodies, Nst1 overexpression inhibited global protein translation in nas6Δ rpn14Δ cells. Translational inhibition is known to suppress aggregation and proteasome assembly defects in base mutants under heat stress. Our data indicate that Nst1 is a previously overlooked P-body component that, when expressed at elevated levels inhibits translation, prevents Rpt subunit aggregation and rescues proteasome assembly under stress conditions.  相似文献   

11.
The functions of Lys(63)-linked polyubiquitin chains are poorly understood, as are the enzymes that specifically generate Lys(63)-linked conjugates. Rsp5 is a HECT (homologous to E6AP C terminus) ubiquitin ligase involved in numerous processes, and an associated deubiquitinating enzyme, Ubp2, modulates its activity. A dramatic increase in Lys(63)-linked conjugates was observed in ubp2Delta cells. The formation of these was Rsp5-dependent, and ubp2Delta phenotypes could be suppressed by prevention of formation of Lys(63) conjugates. Cell wall integrity was impaired in rsp5-1 cells and in cells defective in Lys(63)-polyubiquitination, as assayed by calcofluor white sensitivity, and ubp2Delta and rup1Delta mutants suppressed the calcofluor white sensitivity of rsp5-1. A large fraction of the Lys(63) conjugates in ubp2Delta cells bound to Rsp5, and a proteomics approach was used to identify Rsp5 substrates subject to Ubp2 regulation. Two closely related proteins, Csr2 and Ecm21, were among the identified proteins. Both were efficiently Lys(63)-polyubiquitinated by Rsp5 and deubiquitinated by Ubp2. Together, these results indicate that Ubp2 modulates Lys(63)-polyubiquitination of Rsp5 substrates in vivo, including ubiquitination of two newly identified Rsp5 substrates.  相似文献   

12.
Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.  相似文献   

13.
Brew CT  Huffaker TC 《Genetics》2002,162(3):1079-1089
Stu1p is a microtubule-associated protein required for spindle assembly. In this article we show that the temperature-sensitive stu1-5 allele is synthetically lethal in combination with ubp3, gim1-gim5, and kem1 mutations. The primary focus of this article is on the stu1-5 ubp3 interaction. Ubp3 is a deubiquitination enzyme and a member of a large family of cysteine proteases that cleave ubiquitin moieties from protein substrates. UBP3 is the only one of 16 UBP genes in yeast whose loss is synthetically lethal with stu1-5. Stu1p levels in stu1-5 cells are several-fold lower than the levels in wild-type cells and the stu1-5 temperature sensitivity can be rescued by additional copies of stu1-5. These results indicate that the primary effect of the stu1-5 mutation is to make the protein less stable. The levels of Stu1p are even lower in ubp3Delta stu1-5 cells, suggesting that Ubp3p plays a role in promoting protein stability. We also found that ubp3Delta produces growth defects in combination with mutations in other genes that decrease protein stability. Overall, these data support the idea that Ubp3p has a general role in the reversal of protein ubiquitination.  相似文献   

14.
Dong W  Nowara D  Schweizer P 《The Plant cell》2006,18(11):3321-3331
To study protein ubiquitination pathways in the interaction of barley (Hordeum vulgare) with the powdery mildew fungus (Blumeria graminis), we measured protein turnover and performed transient-induced gene silencing (TIGS) of ubiquitin and 26S proteasome subunit encoding genes in epidermal cells. Attack by B. graminis hyperdestabilized a novel unstable green fluorescent protein fusion that contains a destabilization domain of a putative barley 1-aminocyclopropane-1-carboxylate synthase, suggesting enhanced protein turnover. Partial depletion of cellular ubiquitin levels by TIGS induced extreme susceptibility of transformed cells toward the appropriate host pathogen B. graminis f. sp hordei, whereas papilla-based resistance to the nonhost pathogen B. graminis f. sp tritici and host resistance mediated by the mlo gene (for mildew resistance locus O) remained unaffected. Cells were rescued from TIGS-induced ubiquitin depletion by synthetic genes encoding wild-type or mutant barley monoubiquitin proteins. The strongest rescue was from a gene encoding a K63R mutant form of ubiquitin blocked in several ubiquitination pathways while still allowing Lys-48-dependent polyubiquitination required for proteasomal protein degradation. Systematic RNA interference of 40 genes encoding all 17 subunits of the proteasome 19S regulatory particle failed to induce hypersusceptibility against B. graminis f. sp hordei. This suggests a role for Lys-48-linked protein polyubiquitination, which is independent from the proteasome pathway, in basal host defense of barley.  相似文献   

15.
16.
Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.  相似文献   

17.
泛素-蛋白酶体途径及其生物学作用的研究进展   总被引:3,自引:0,他引:3  
泛素-蛋白酶体途径是细胞内重要的非溶酶体蛋白降解途径,是调节各种细胞生物学过程的重要机制,参与调节细胞周期进程、细胞增生与分化以及信号转导等各种细胞生理过程,对维持细胞正常生理功能具有十分重要的意义。本文简要介绍了泛素-蛋白酶体途径的作用过程,并从其对某些抑癌基因、转录因子和细胞周期素依赖性激酶抑制蛋白的调节,参与肿瘤及癌症的发生和发展,讨论其生物学作用,并指出其在药物研究方面的重要作用。  相似文献   

18.
Summary Cell lines from Chinese hamster ovary [CHO-K1-D3] and human fibroblast cells [46, XX, 18p-] were mutagenized with N-nitrosomethylurea followed by a selection for cycloheximide resistance. Two mutants resistant against the durg were selected from either wildtype. 80S ribosomes and their ribosomal subunits were isolated from all mutant and wildtype cells. 80S ribosomes reassociated from the isolated subunits were as active as isolated 80S couples in the poly (U) dependent poly (Phe) synthesis. Hybrid 80S ribosomes constructed from subunits of the various cell lines of the same species were fully active, whereas the interspecies 80S hybrids were not active at all in poly (Phe) synthesis.Hybrid 80S ribosomes from subunits of mutant and the ocrresponding wildtype cells were tested in the poly (U) assay in the presence and absence of cycloheximide. The results strikingly indicate that in all four mutant cell lines the resistance against cycloheximide is conferred by the large subunit of cytoplasmic ribosomes.Abbreviations CHM Cycloheximide - CHO Chinese hamster ovarien - FBS foetal bovine serum - Eagle MEM Eagle minimal essential medium - EMS Ethyl-metansulfonate - NMU N-nitrosomethylurea  相似文献   

19.
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host.  相似文献   

20.
Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13. When proteolysis is even partially inhibited in cells or purified 26S proteasomes with various inhibitors, Rpn13 becomes extensively and selectively poly‐ubiquitinated by the proteasome‐associated ubiquitin ligase, Ube3c/Hul5. This modification also occurs in cells during heat‐shock or arsenite treatment, when poly‐ubiquitinated proteins accumulate. Rpn13 ubiquitination strongly decreases the proteasome's ability to bind and degrade ubiquitin‐conjugated proteins, but not its activity against peptide substrates. This autoinhibitory mechanism presumably evolved to prevent binding of ubiquitin conjugates to defective or stalled proteasomes, but this modification may also be useful as a biomarker indicating the presence of proteotoxic stress and reduced proteasomal capacity in cells or patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号