首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay system capable of simultaneously measuring ATP, ADP, and AMP concentrations was used for the measurement of oxidative phosphorylation and adenylate kinase (5′-ATP:5′-AMP phosphotransferase) activities in mitochondria which were isolated from etiolated corn, soybean, or cucumber seedlings. Data obtained by this system was correlated with colorimetric Pi uptake and spectrophotometric NADH oxidation measurements. Adenylate kinase was active in both phosphorylating and nonphosphorylating mitochondria. Studies using NaCN, 2,4-dinitrophenol, atractyloside, and 2′-AMP as inhibitors indicated that exogenously supplied [14C]AMP was converted to [14C]ADP either by NADH-linked phosphorylation or by translocation and transphosphorylation from intramitochondrial nucleotides.  相似文献   

2.
GTP is required for iron-sulfur cluster biogenesis in mitochondria   总被引:1,自引:0,他引:1  
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.  相似文献   

3.
4.
Diacylglycerol kinases are involved in cell signaling, either as regulators of diacylglycerol levels or as intracellular signal-generating enzymes. However, neither their role in signal transduction nor their biochemical regulation has been elucidated. Hepatocyte growth factor (HGF), upon binding to its tyrosine kinase receptor, activates multiple signaling pathways stimulating cell motility, scattering, proliferation and branching morphogenesis. Herein we demonstrate that: (i) the enzymatic activity of alpha-diacylglycerol kinase (alphaDgk) is stimulated by HGF in epithelial, endothelial and alphaDgk-transfected COS cells; (ii) cellular expression of an alphaDgk kinase-defective mutant inhibits activation of endogenous alphaDgk acting as dominant negative; (iii) specific inhibition of alphaDgk prevents HGF-induced cell movement of endothelial cells; (iv) HGF induces the association of alphaDgk in a complex with Src, whose tyrosine kinase activity is required for alphaDgk activation by HGF; (v) Src wild type stimulates alphaDgk activity in vitro; and (vi) alphaDgk can be tyrosine phosphorylated in intact cells.  相似文献   

5.
Proper activation of the Ras/MAPK pathway is broadly required during development, and in many cases, signal transduction downstream of the receptor is linear. Thus, different mechanisms exist to properly regulate the large number of specific developmental outputs that are required by the activation of this pathway. Previously, we have reported a regulated cytoplasmic sequestration of phosphorylated MAPK (pMAPK) in developing Drosophila compound eyes and wings “called MAPK Cytoplasmic Hold”. In the developing wing, we have shown that cytoplasmic hold promotes the differentiation of wing vein tissue, while pMAPK nuclear translocation regulates growth and division. We had also suggested that the Ras pathway signals for inducing cell growth and cell division split upstream of the nuclear translocation of MAPK itself. Here, we further refine the role of MAPK in Drosophila. We report evidence that suggests, for the first time, that the phosphorylation of MAPK is itself another step in the regulation of cell growth and division in both Drosophila wing and eye cells. We show that inhibition of MAPK phosphorylation, or pMAPK nuclear translocation, is sufficient to block cell growth, but not cell division. These data suggest that non-phosphorylated MAPK is sufficient to induce cell division, but not cell growth, once inside the nucleus of the cell.Key words: Drosophila, MAPK, growth, division, proliferation, phosphorylation  相似文献   

6.
The role of integrin-linked kinase (ILK) in transforming growth factor beta (TGFbeta)-mediated epithelial to mesenchymal transition was investigated. A stable transfection of dominant-negative ILK results in the prevention of TGFbeta-mediated E-cadherin delocalization. TGFbeta-mediated phosphorylation of Akt at Ser-473 was inhibited by dominant-negative ILK and PI3K inhibitors, LY294002 and wortmannin. Treatment with TGFbeta stimulated induction of Akt and ILK kinase activity in HaCat control cells. This increased ILK activity by TGFbeta was lowered by PI3K inhibitor, LY294002. In addition, PI3K inhibitor, dominant-negative Akt, and dominant-negative ILK could not block TGFbeta-mediated C-terminal phosphorylation of Smad2. Taken together, these data suggest that PI3K-ILK-Akt pathway that is independent of the TGFbeta-induced Smad pathway is required for TGFbeta-mediated epithelial to mesenchymal transition.  相似文献   

7.
MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ0 cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid.  相似文献   

8.
9.
1. A procedure is described for the isolation of intact polyribosomes from the cytoplasm, chloroplasts and mitochondria of Euglena gracilis. 2. All three polyribosomal preparations incorporated labelled amino acids in a system in vitro. The cytoplasmic system was inhibited by chcloheximide but not by chloramphenicol. Both the chloroplast and the mitochondrial systems, however, were inhibited by chloramphenicol but not by cycloheximide. It is shown that mitochondrial polyribosomes, like the polyribosomes from cytoplasm and chloroplasts, can participate directly in protein synthesis without supplementary mRNA being added to the synthesizing system, as in previously reported instances. 3. Sedimentation coefficients were measured for the ribosomes, ribosomal subunits, and rRNA of the cytoplasm, chloroplasts and mitochondria. 4. The G+C content was 55% for cytoplasmic rRNA, 50% for chloroplast rRNA, and 29% for mitochondrial rRNA. 5. The cytoplasmic ribosomal subunits contained a ribonuclease activity that was inhibited by heparin.  相似文献   

10.
Members of the Rho family of small GTPases, such as Rho and Rac, are required for actin cytoskeletal reorganization during the migration of carcinoma cells. Phosphodiesterases are necessary for this migration because they alleviate cAMP-dependent protein kinase (PKA)-mediated inhibition of RhoA (O'Connor, K. L., Shaw, L. M., and Mercurio, A. M. (1998) J. Cell Biol. 143, 1749-1760; O'Connor K. L., Nguyen, B.-K., and Mercurio, A. M. (2000), J. Cell Biol. 148, 253-258). In this study, we report that the migration of breast and squamous carcinoma cells toward either lysophosphatidic acid or epidermal growth factor involves not only phosphodiesterase activity but also cooperative signaling from PKA. Furthermore, we demonstrate that Rac1 activation in response to chemoattractant or beta(1) integrin clustering is regulated by PKA and that Rac1 is required for this migration. Also, we find that beta(1) integrin signaling stimulates the rapid and transient activation of PKA. A novel implication of these findings is that carcinoma cell migration is controlled by cAMP-dependent as well as cAMP inhibitory signaling mechanisms.  相似文献   

11.
Integrin-linked kinase (ILK) links integrins to the actin cytoskeleton and is believed to phosphorylate several target proteins. We report that a keratinocyte-restricted deletion of the ILK gene leads to epidermal defects and hair loss. ILK-deficient epidermal keratinocytes exhibited a pronounced integrin-mediated adhesion defect leading to epidermal detachment and blister formation, disruption of the epidermal-dermal basement membrane, and the translocation of proliferating, integrin-expressing keratinocytes to suprabasal epidermal cell layers. The mutant hair follicles were capable of producing hair shaft and inner root sheath cells and contained stem cells and generated proliferating progenitor cells, which were impaired in their downward migration and hence accumulated in the outer root sheath and failed to replenish the hair matrix. In vitro studies with primary ILK-deficient keratinocytes attributed the migration defect to a reduced migration velocity and an impaired stabilization of the leading-edge lamellipodia, which compromised directional and persistent migration. We conclude that ILK plays important roles for epidermis and hair follicle morphogenesis by modulating integrin-mediated adhesion, actin reorganization, and plasma membrane dynamics in keratinocytes.  相似文献   

12.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

13.
The recruitment and cleavage of pro-caspase-8 to produce the active form of caspase-8 is a critical biochemical event in death receptor-mediated apoptosis. However, the source of pro-caspase-8 available for activation by apoptotic triggers is unknown. In human fibroblasts and mouse clonal striatal cells, confocal microscopy revealed that pro-caspase-8 immunofluorescence was colocalized with cytochrome c in mitochondria and was also distributed diffusely in some nuclei. Biochemical analysis of subcellular fractions indicated that pro-caspase-8 was enriched in mitochondria and in nuclei. Pro-caspase-8 was found in the intermembrane space, inner membrane, and matrix of mitochondria after limited digestion of mitochondrial fractions, and this distribution was confirmed by immunogold electron microscopy. Pro-caspase-8 and cytochrome c were released from isolated mitochondria that were treated with an inhibitor of the ADP/ATP carrier atractyloside, which opens the mitochondria permeability transition pore. Release was blocked by the mitochondria permeability transition pore inhibitor cyclosporin A (CsA). After clonal striatal cells were exposed for 6 h to an apoptotic inducer tumor necrosis factor-alpha (TNF-alpha), mitochondria immunoreactive for cytochrome c and pro-caspase-8 became clustered at perinuclear sites. Pro-caspase-8 and cytochrome c levels decreased in mitochondrial fractions and increased, along with pro-caspase-8 cleavage products, in the cytoplasm of the TNF-alpha-treated striatal cells. CsA blocked the TNF-alpha-induced release of pro-caspase 8 but not cytochrome c. Internucleosomal DNA fragmentation started at 6 h and peaked 12 h after TNF-alpha treatment. These results suggest that pro-caspase-8 is predominantly localized in mitochondria and is released upon apoptotic stimulation through a CsA-sensitive mechanism.  相似文献   

14.
Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context. During secondary immunoglobulin (Ig) diversification in B lymphocytes, DNA damage is abundantly introduced by activation-induced cytidine deaminase (AID) and processed to mutations in a locus-specific manner by several error-prone DNA repair pathways. We have previously shown that Chk1 negatively regulates Ig somatic hypermutation by promoting error-free homologous recombination and Ig gene conversion. We now report that Chk2 shows opposite effects to Chk1 in the regulation of these processes. Chk2 inactivation in B cells leads to decreased Ig hypermutation and Ig class switching, and increased Ig gene conversion activity. This is linked to defects in non-homologous end joining and increased Chk1 activation upon interference with Chk2 function. Intriguingly, in the context of physiological introduction of substantial DNA damage into the genome during Ig diversification, the 2 checkpoint kinases thus function in an opposing manner, rather than redundantly or cooperatively.  相似文献   

15.
BACKGROUND: Y14 is an RNA binding protein which is part of a multiprotein complex, the exon-exon junction complex (EJC), that assembles on the exon-exon junctions of mRNAs produced by splicing. The position-specific binding of Y14 persists on mRNAs after their export to the cytoplasm. Thus, Y14, together with its interacting proteins, has the capacity to communicate to the cytoplasm the processing history of the mRNA, including the position of the removed introns, information that is likely to be important for defining premature termination codons. How Y14 and other components of the EJC are removed from mRNAs into the cytoplasm has not been determined.RESULTS: We show that Y14 but not another EJC component, Aly/REF, is present in polysome profile fractions containing one ribosome per mRNA. Using reporter constructs in an in vitro splicing/translation-coupled system, we show that Y14 remains associated with untranslated mRNAs but is removed from translationally active mRNAs. Importantly, mRNAs whose translation in vivo is prevented by the presence of strong secondary 5' UTR structure retain Y14 in the cytoplasm.CONCLUSIONS: These findings indicate that Y14 remains associated with mRNAs in the cytoplasm until they are translated, and translation is required to remove Y14 from mRNAs. Thus, the process of translation removes the splicing-dependent EJC protein imprints, which most likely function in the surveillance of mRNAs to define premature termination codons and possibly also in modulating the translation activity of cytoplasmic mRNAs.  相似文献   

16.
Protein kinase C-theta (PKCtheta) is critical for TCR-initiated signaling in mature T cells, but initial reports found no requirement for PKCtheta in thymocyte development. Thymocytes and peripheral T cells utilize many of the same signaling components and, given the significant role of PKCtheta in peripheral T cells, it was surprising that it was not involved at all in TCR signaling in thymocytes. We decided to re-evaluate the role of PKCtheta in thymocyte development using the well-characterized class II-restricted n3.L2 TCR-transgenic TCR model. Analysis of n3.L2 PKCtheta(-/-) mice revealed a defect in thymocyte-positive selection, resulting in a 50% reduction in the generation of n3.L2 CD4 single-positive thymocytes and n3.L2 CD4 mature T cells. Competition between n3.L2 WT and n3.L2 PKCtheta(-/-) thymocytes in bone marrow chimeras revealed a more dramatic defect, with a >80% reduction in generation of n3.L2 CD4 single-positive thymocytes derived from PKCtheta(-/-) mice. Inefficient positive selection of n3.L2 PKCtheta(-/-) CD4 single-positive cells resulted from "weaker" signaling through the TCR and correlated with diminished ERK activation. The defect in positive selection was not complete in the PKCtheta(-/-) mice, most likely accounted for by compensation by other PKC isoforms not evident in peripheral cells. Similar decreased positive selection of both CD4 and CD8 single-positive thymocytes was also seen in nontransgenic PKCtheta(-/-) mice. These findings now place PKCtheta as a key signaling molecule in the positive selection of thymocytes as well as in the activation of mature T cells.  相似文献   

17.
18.
L K Durrin  R K Mann  P S Kayne  M Grunstein 《Cell》1991,65(6):1023-1031
  相似文献   

19.
The protein derived from the Methanocaldococcus jannaschii MJ0458 gene is annotated as a δ-1-pyrroline 5-carboxylate synthetase and is predicted to be related to aspartokinase and uridylate kinase. Analysis of the predicted protein sequence indicated that it is a unique kinase with few similarities to either uridylate or adenylate kinase. Here, we report that the MJ0458 gene product is a second type of archaeal adenylate kinase, AdkB. This enzyme is different from the established archaeal-specific adenylate kinase in both sequence and predicted tertiary structure.  相似文献   

20.
1. Yeast pyruvate kinase was purified to near homogeneity and subjected to chemical modification by trinitrobenzenesulfonate and by P1, P2-bis (5' pyridoxal) diphosphate. 2. Labeled peptides were isolated and their amino acid composition was determined. 3. The results suggest that yeast pyruvate kinase has an essential lysine residue, and that this residue is in a location equivalent to an essential lysine described in the muscle enzyme. 4. Protection experiments indicate that this lysine is located at the nucleotide binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号