首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of ligand binding regions of the human formyl peptide receptor   总被引:1,自引:0,他引:1  
The formyl peptide receptor is involved in the activation of human neutrophils (PMN) and their subsequent response to chemotactic peptides such as FMLP. The normal FMLP receptor has been reported to contain both high and low affinity states and to consist of several glycoprotein components, ranging in size from 40-94 kDa. However, little is known about the functional domains of the receptor. In this study we have constructed synthetic peptides corresponding to different portions of the reported receptor structure, and have tested their involvement in ligand binding. One of these peptides, corresponding to the first extracellular loop of the N-terminus end of the molecule, has been shown to specifically inhibit FMLP binding to PMN membranes. Concomitantly, this peptide exhibited the strongest direct binding to the ligand. We propose that this portion of the FMLP receptor molecule is important in receptor-ligand interactions.  相似文献   

2.
The neutrophil FMLP receptor is involved in activation and subsequent response to certain chemotactic stimuli. The normal receptor has been reported to consist of several components, ranging in size from 43-94 kDa, and to contain both high and low affinity states. However, limited information is available on the gene/s which encode for the receptor. In this study, we have generated oligonucleotide probes derived from a published cDNA sequence encoding for one of the components of the FMLP receptor, and used these probes to amplify genomic DNA from HL-60 cells as well as normal human neutrophils, using the polymerase chain reaction. Such procedure resulted in the amplification of a single, approximately 1 kb fragment of genomic DNA identical in sequence to the cDNA described in the literature for one of the isoforms of the receptor. This finding supports the notion that the human FMLP receptor is encoded by at least one, intronless gene.  相似文献   

3.
The study of polymorphonuclear neutrophil (PMN) surface receptor expression provides a means for the assessment of PMN function and state of cellular activation. In this study, we characterized binding of the chemotactic peptide FMLP to whole PMN, with particular attention to those variables that may account for the wide variation reported in the literature. These included avoidance of oxidized FMLP as a radioligand contaminant, determination of the optimal cold ligand concentration necessary for achieving minimal nonspecific binding throughout the range of radioligand concentrations used in saturation experiments (greater than or equal to 5 x 10(-5) M), avoidance of radioligand concentrations that equal or exceed receptor saturation and are not suitable for Scatchard analysis (greater than or equal to 60 to 80 nM), and avoidance of inadvertent receptor mobilization due to room temperature PMN isolation techniques and cell warming. PMN isolated and maintained at 4 degrees C expressed a single, high affinity population of FMLP receptors (approximately 6000 receptors per cell) with a KD of 15.5 nM. These characteristics, and in particular the single-affinity nature of the expressed FMLP receptor site, were derived from saturation experiments and confirmed with agonist competition studies. PMN subjected to room temperature isolation or 37 degrees C warming exhibited a 2.5-fold increase in FMLP receptor expression (approximately 15,000 receptors per cell) without changes in receptor affinity. These latter PMN, in correlation with increased receptor expression, had increased initial, maximal rates of FMLP-induced superoxide generation (10.2 vs 6.3 nmol/min/10(6) PMN for cells isolated and maintained at 4 degrees C) as a manifestation of their functional activation. The avoidance of inadvertent cellular activation during PMN isolation is essential to studies of PMN function, activation and the role of FMLP receptor expression/mobilization in these processes.  相似文献   

4.
Holm J  Hansen SI 《Bioscience reports》2002,22(3-4):455-463
Two molecular forms of the folate binding protein were isolated and purified from human milk by a combination of cation exchange- and affinity chromatography. One protein (27 kDa) was a cleavage product of the other 100 kDa protein as evidenced by N-terminal amino acid sequence homology and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidylinositol tail by phosphatidylinositol-specific phospholipase C. High-affinity binding of [3H]folate was characterized by upward convex Scatchard plots and increasing ligand binding affinity with decreasing concentrations of both proteins. Downward convex Scatchard plots and binding affinities showing no dependence on the protein concentration were, however, observed in highly diluted solutions of both proteins. Radioligand binding was inhibited by folate analogs, and dissociation of radioligand was slow at pH 7.4 but rapid and complete at pH 5.0 and 3.5. Ligand binding quenched the tryptophan fluorescence of the 27 kDa protein suggesting that tryptophan is present at the binding site and/or ligand binding induces a conformation change that affects tryptophan environment in the protein. The 27 kDa protein representing soluble folate binding protein exhibited a greater affinity for ligand binding than the 100 kDa protein which possesses a hydrophobic tail identical to the one that anchors the folate receptor to the cell membrane.  相似文献   

5.
The human tumor necrosis factor (TNF) receptor on interleukin (IL)-2-stimulated lymphocytes was characterized by binding and crosslinking techniques. The TNF receptor on IL-2-activated lymphocytes has an affinity of approximately 50 pM. Conventional crosslinking studies with the DSS analog bis(sulfosuccinimidyl) suberate demonstrated a ligand-receptor complex molecular weight of 106-108 kDa. Lectin precipitation experiments indicated that the receptor is a glycoprotein with an affinity for lectin isolated from Ricinus communis. Affinity crosslinking studies with the iodinateable, cleavable crosslinker sulfosuccinimidyl 2-(p-azido-salicylamido) ethyl 1,3'-dithiopropionate demonstrated that the TNF receptor, by itself, in the absence of bound ligand, has a molecular weight of approximately 90 kDa. Furthermore, these results indicate that the crosslinked TNF:TNF-receptor complexes observed at 104-108 kDa are composed of receptor and monomeric TNF.  相似文献   

6.
The interleukin 1 (IL-1) receptor from mouse EL-4 thymoma cells was purified to homogeneity by a method which utilized ligand affinity chromatography and classical chromatographic techniques. After solubilization of the receptor from intact cells with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, the IL-1 binding activity was purified greater than 23,000-fold. Analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot, and ligand blot demonstrated that a single protein of molecular mass of approximately 80 kDa is the IL-1 binding polypeptide. The purified protein bound IL-1 with a dissociation constant of approximately 1.1 X 10(-10) M, which is indistinguishable from the affinity of the cell-bound receptor. The amino acid composition of this protein is strikingly similar to the composition deduced from the sequence of a cDNA coding for an IL-1 receptor from EL-4 cells. Protein sequence analysis of Staphylococcus aureus V-8 protease-derived peptides yields data consistent with the sequence proposed from cloned cDNA. These studies have demonstrated that the high affinity IL-1 receptor on EL-4 cells is the 80-kDa protein.  相似文献   

7.
The glycoprotein nature of the ligand binding subunit of photoaffinity-labeled striatal D2 receptors was investigated. Upon photolysis, [125I]N-azidophenethylspiperone covalently incorporated into a major band of Mr 94000 with an appropriate pharmacological profile for D2 receptors as assessed by autoradiography following SDS-polyacrylamide gel electrophoresis. The exoglycosidase, neuraminidase, altered the electrophoretic mobility of the 94 kDa labeled band to 54 kDa with a slight modification in the binding affinity of [3H]spiperone. Endoglycosidase treatment (glycopeptidase-F) produced a further increase in the mobility of the 94 kDa peptide to approximately 43 kDa. A smaller specifically photolabeled D2 receptor peptide of 34 kDa does not contain terminal sialic acid but is an N-linked glycoprotein as assessed by lectin affinity chromatography and susceptibility to digestion by glycopeptidase-F to a peptide of approximately 23 kDa.  相似文献   

8.
The subcellular distribution of GTP binding proteins in human neutrophils and their functional coupling to the N-formylmethionylleucylphenylalanine (FMLP) receptor was characterized to provide insight into mechanisms of cellular activation. Human neutrophils were nitrogen cavitated and fractionated on discontinuous Percoll gradients. Four subcellular fractions were obtained: cytosol, light membranes enriched for plasma membranes, specific granules and azurophilic granules. ADP-ribosylation catalyzed by pertussis toxin (PT) revealed a major substrate of 40 kDa only in plasma membrane and cytosol, and antiserum specific for Gi alpha confirmed the presence of neutrophil Gi alpha in plasma membrane and cytosol and its absence from specific granules. The cytosolic PT substrate was shown to be mostly in monomeric form by molecular sieve chromatography. The rate of the ribosyltransferase reaction was several-fold lower in cytosol compared to plasma membranes, and the extent of ADP-ribosylation was greatly augmented by supplementation with beta gamma subunits in cytosol. ADP-ribosylation catalyzed by cholera toxin (CT) revealed substrates of 52, 43 and 40 kDa in plasma membrane alone. FMLP receptors in plasma membrane were shown to be coupled to the 40 kDa substrate for CT by ligand-modulation of ADP-ribosylation, while FMLP added to specific granules did not induce ribosylation of this substrate even though FMLP receptors were found in high density in this compartment. Both 24 and 26 kDa [32P]GTP binding proteins were found to codistribute with FMLP receptors in specific granules and plasma membranes. Functional evidence for the coupling of GTP binding proteins to the FMLP receptor in specific granules was obtained by modulating [3H]FMLP binding with GTP gamma S, and by accelerating [35S]GTP gamma S binding with FMLP.  相似文献   

9.
The contribution of N-linked carbohydrates to human interferon-gamma receptor (hIFN-gamma-R) structure and function was investigated in four tumor cell lines of various tissue origin. Western and ligand blotting of native and deglycosylated, affinity-purified hIFN-gamma-R of the monocytic cell line U937 and the lymphoid cell line Raji revealed that the different sizes of hIFN-gamma-R from U937 (103 kDa) and Raji (90 kDa) cells are reduced upon either metabolic inhibition or enzymatic deglycosylation of N-linked carbohydrates to a common size of the receptor molecule with an apparent molecular mass of 73 kDa for both cell lines, indicating that heterogeneity in hIFN-gamma-R size is largely due to differential glycosylation. In all cell lines investigated, inhibition of N-linked glycosylation or modulation of carbohydrate processing did not prevent receptor transport to the cell membrane, but blocked hIFN-gamma binding capacity of membrane-expressed receptor molecules, as revealed by specific binding of hIFN-gamma-R-specific monoclonal antibody and specific binding of 125I-labeled hIFN-gamma. These data suggest that a lack of complex-type N-linked carbohydrates is associated with a complete loss of receptor function, i.e. high affinity binding capacity. Recovery of hIFN-gamma binding of deglycosylated receptors was achieved upon affinity purification and adsorption to nitrocellulose membranes, indicating that the carbohydrate side chains themselves do not directly contribute to the ligand binding epitope but seem to be essential for appropriate conformation of the receptor protein in the cell membrane.  相似文献   

10.
We report here the molecular characterization of a recombinant cell line (293-STaR) expressing the heat-stable enterotoxin receptor (STaR) from human intestine. We have compared the 293-STaR cell line with the human colonic cell line T84 that endogenously expresses STa binding sites. Scatchard analysis of displacement binding studies revealed a single STa binding site with an affinity (Ki) of 97 pM in 293-STaR compared with 55 pM in T84 cells. Saturation isotherms of STa binding gave a Kd of 94 pM for the cloned receptor expressed in 293 cells and 166 pM for the receptor present in T84 cells. Kinetic measurements of STa binding to 293-STaR gave an association rate constant, K1, of 2.4 x 10(8) M-1 min-1 and a dissociation rate constant, K2, of 0.016 min-1. The half-time of dissociation was 43 min, and the Kd calculated from the ratio of the kinetic constants was 67 pM. The pH profile of STa binding showed that the number of STa binding sites is increased 3-fold at pH 4.0 compared with pH 7.0, with no effect on binding affinity. A polyclonal antibody directed against the extracellular domain of STaR immunoprecipitated two proteins of approximately 140 and 160 kDa from both 293-STaR and T84 cells. Cross-linking of 125I-STa to 293-STaR cells resulted in the labeling of proteins with a molecular mass of approximately 153, 133, 81, 68, 56, and 49 kDa, the two smallest being the more abundant. Similar results have been reported for the STaR present on rat brush border membranes. These data suggest that the STaR-guanylyl cyclase identified by molecular cloning is the only receptor for STa present in T84 cells.  相似文献   

11.
It is believed that human progesterone receptor (PR) contains a ligand binding subunit A (83 kDa) or subunit B (120 kDa) and 2 copies of heat shock proteins (hsp90) of molecular weight 90 kDa. To elucidate the mechanism of hormone binding, we employed radiation inactivation to determine its functional size. The functional masses determined in the presence of glycerol, molybdate and potassium chloride were 120 \pm 14, 124 \pm 13 and 130 \pm 20 kDa, respectively. From scatchard plot analysis, the radiation decreased the binding sites and increased the binding affinity of PR with ligand. The functional masses of PR dissolved in the three variant buffers were similar to the molecular weight of PR subunit B. The results implied that PR subunit B could bind with ligand despite hsp90 and hsp90 was not involved in the PR binding to progesterone.  相似文献   

12.
In order to characterize the CCK receptor in guinea-pig pancreas, iodinated CCK-39 was bound to pancreatic membranes and the reversible complex was solubilized using various non-denaturing detergents. In term of recovery of ligand stabilized receptors, the relative potencies were Zwittergent 3-14 greater than CHAPS = CHAPSO greater than digitonin greater than MEGA 10 greater than octyl beta-D-glucopyranoside. The stability of receptor complexes was increased by glycerol. Chromatographic analysis revealed that digitonin was the most efficient detergent for disaggregation of CCK receptor complex since it yielded a 76 kDa component in addition to the large components obtained after solubilization with CHAPS and Zwittergent. Furthermore, CCK receptors were covalently labelled using dissuccinimidyl suberate or UV irradiation of labelled membranes by photoactivable radioiodinated CCK-39 and subsequently solubilized by CHAPS + SDS or by SDS alone. A predominant molecule was characterized by chromatography (76 kDa) and SDS-PAGE (89 kDa). In addition to this component, other components having molecular masses of 130-150 kDa, 57 kDa and 40 kDa were detected by SDS-PAGE. They correspond to minor bands. These bands, except the 40 kDa band, were protected from covalent labelling by the presence of CCK-39 (10(-6) M) during initial incubation. Reduction under beta-mercaptoethanol mainly resulted in the decrease of high molecular weight aggregates (Mr greater than 200 kDa). We concluded that for a given detergent a specific molecular weight pattern of solubilized CCK receptor complex is achieved. The minimal component had a molecular mass of 71-84 kDa according to the method of biochemical analysis used.  相似文献   

13.
Purification of the D-2 dopamine receptor from bovine striatum   总被引:2,自引:0,他引:2  
The D-2 dopamine receptor has been purified 21500 fold from bovine striatal membranes. Solubilized receptor preparation was partially purified by affinity chromatography on a haloperidol adsorbent followed by gel filtration on a Sephacryl S-300 column. The fractions eluted from this column which contained the ligand binding activity were further chromatographed on wheat germ agglutinin conjugated to Sepharose. The resulting receptor preparation displays a major polypeptide band of an apparent molecular weight of 92 kDa, and exhibits a specific binding activity of 2490 pmol spiperone per mg protein. This purified receptor preparation can reabsorb specifically to the haloperidol affinity column indicating that the 92 kDa polypeptide represents the ligand binding unit of the D-2 dopamine receptor.  相似文献   

14.
Opiate receptor binding decayed exponentially in mouse neuroblastoma-rat glioma (NG108-15) hybrid cell preparations following exposure to increasing doses of ionizing radiation (0.2 to 7.0 Mrads; 2.0 Mrads/min). Target size analysis revealed that [3H][D-Ala2, D-Leu5]enkephalin (agonist) and [3H]naloxone (antagonist) bound specifically to a component with an apparent molecular size of 200,000 +/- 20,000. Lyophilization of cells for the irradiation procedure did not significantly alter receptor affinity or binding capacity for these ligands. Furthermore, the loss of opiate receptor binding in irradiated cell samples could not be attributed to reduced receptor affinity since increasing concentrations of radiolabeled ligand failed to reverse the inhibition; nonspecific binding decreased only slightly under identical experimental conditions. The value of determining molecular size by radiation inactivation analysis was confirmed by showing that apparent target sizes for two representative lysosomal enzymes (beta-galactosidase and alpha-mannosidase) were consistent with results obtained previously using conventional methods. Thus, the data suggest that the ligand binding component of delta-opiate (enkephalin) receptors in NG108-15 cells has a minimum functional size of approximately 200,000.  相似文献   

15.
This study describes the biochemical characterization and kinetic analysis of the interleukin-1 (IL-1) receptor in Raji human B-lymphoma and EL4 murine T-lymphoma cells. The internalization of 125I-IL-1 was studied in both cell types by an acid extraction technique which removes surface bound ligand. At 37 degrees C, binding to Raji IL-1 receptors was almost entirely cell surface (91%). EL4 cells, in contrast, internalized 59% of ligand at this temperature and this was almost totally inhibited by sodium azide. Receptor binding studies showed that the B-cells had a lower binding affinity but much higher receptor density per cell (KD = 2.1 nM, Ro = 7709) than the T-cells (KD = 0.4 nM, Ro = 241). The receptor binding affinity of two IL-1 analogs, Glu-4 and clone 18, was determined in competitive binding studies. In the B-cells the analogs had binding affinities of 25 and 90%, respectively, whereas in the T-cells the affinities were 0.2 and 200%, respectively. Chemical cross-linking studies showed that the IL-1 receptor in B-cells had a lower molecular weight than that in T-cells (68 kDa compared to 80 kDa). In summary these studies demonstrate that structural differences exist between IL-1 receptors in Raji and EL4 cells.  相似文献   

16.
Identification and distribution of two forms of the interleukin 1 receptor   总被引:3,自引:0,他引:3  
R Solari 《Cytokine》1990,2(1):21-28
Using affinity crosslinking techniques, we have biochemically characterized the interleukin-1 (IL1) receptor and investigated its distribution on a range of murine and human cell lines. We show that two forms of IL1 receptor can be identified on the basis of specific crosslinking with 125I-IL1 alpha and 125I-IL1 beta. The two receptor forms have an approximate molecular mass of approximately 80 and approximately 60 kDa, and were found on both murine and human cells. Their relative distribution shows no clear cell lineage restriction and does not correlate with preferential binding of IL1 alpha or IL1 beta. Some cells, such as the T helper cell line D10.G4.1, express both forms of the receptor. Iodine 125-IL1 was crosslinked to the two receptor forms and a partial peptide map analysis of the two receptor/ligand complexes was performed. Comigration of the major partial peptide fragments suggests that the approximately 80 and approximately 60 kDa forms of the receptor may be differentially processed forms of the same protein. Treatment of the approximately 60 kDa IL1 receptor on Raji cells with N-glycanase reduced its molecular mass by 12 kDa, showing that this lower molecular mass form is a glycoprotein; glycosylation differences alone probably do not account for the difference in mass between the two forms.  相似文献   

17.
Cell surface receptors transduce signals, required to produce cellular activity, that may be mediated by ligand-induced receptor aggregation. Several receptor systems exhibit both low and high ligand affinities and some models of receptor activation associate receptor clusters with high or low ligand binding affinity. In the present work succinyl concanavalin A, which binds with both high and low affinity to receptors, was studied on 3T3 Swiss mouse fibroblasts, where preaggregation of receptors has been postulated. Scanning fluorescence correlation spectroscopy measurements were used to determine the relationship between the degree of ligand binding and the state of receptor aggregation. Correlation analysis of fluorescence fluctuations across the cell surface reveal that the variance of the fluctuations (quantitated by g[0]) increased when the ligand concentration was varied from 0.33 to 67 mg/L. The g(0) values reached a plateau at concentrations greater than approximately 10 mg/L. These data are incompatible with homogeneous receptor distributions or equal affinity receptor binding but are compatible with a partly aggregated receptor system with high affinity binding to small aggregates, and low affinity binding to large aggregates. Computer simulated scanning fluorescence correlation spectroscopy experiments confirm that background fluorescence from the cell does not account for the experimentally observed effects.  相似文献   

18.
A series of chemically synthesized oligomannosides that contain mannose 6-phosphate residues were utilized as inhibitors of the binding of beta-galactosidase to high (CI-MPR, 215 kDa) and low (CD-MPR, 41-46 kDa) molecular mass mannose 6-phosphate receptor from bovine testes in order to probe the specificity of each receptor. Mannobioside phosphorylated in the terminal position and linked alpha(1,2) was a 6-fold better inhibitor than the corresponding alpha(1,3)- and alpha (1,6)-linked isomers. Inhibition observed with a monophosphorylated alpha(1,2)-linked mannotrioside was approximately 6-fold greater than that with the corresponding mannobioside. Penultimate glycosidic linkages of the oligomannosides played little or no role in the inhibition of binding of ligand to the receptors. Monophosphorylated oligomannosides containing phosphomonoester groups on penultimate mannose residues were not inhibitors. Binding inhibition observed for biantennary oligomannosides with phosphate on terminal mannose residues of either alpha(1,3) or alpha(1,6) chains closely approximated the values obtained with analogous trimannosides. A biantennary oligomannoside on which each antennary chain contained a terminal phosphate exhibited approximately an 8-fold greater inhibition than monophosphorylated compounds. Although the receptors exhibited similar relative specificities for phosphomonoesters, phosphodiesters did not inhibit binding of ligand to CD-MPR and only weakly inhibited binding to CI-MPR.  相似文献   

19.
Using 125I-interleukin-1 beta (125I-IL-1 beta) as a ligand, a specific receptor of high affinity dissociation constant (1.1 +/- 0.2 x 10(-10) M) with binding sites (350 +/- 40/cell) for interleukin-1 beta (IL-1 beta) has been demonstrated on cultured porcine thyroid cells. IL-1 alpha almost equally cross-reacted with the receptor (Kd = 1.2 +/- 0.3 x 10(-10) M and 350 +/- 50 binding sites/cell). TSH, IL-2 and other peptide hormones did not inhibit the binding of 125I-IL-1 beta to thyroid cells. Crosslinking study revealed a major band (approximately 95 kD) with a corrected molecular mass of approximately 78 kD. Moreover, both IL-1 beta and IL-1 alpha stimulated prostaglandin E2 production of cultured porcine thyroid cells, although the potency of IL-1 alpha was slightly greater than that of IL-1 beta. These results suggest that IL-1 may be involved in the regulation of thyroid cell function.  相似文献   

20.
The mobility of purified mu opioid binding protein in SDS-polyacrylamide gek electrophoresis is sensitive to the presence of reducing agents. In the presence of increasing concentrations of DTT the apparent molecular weight increases in a stepwise fashion from 53 kDa to 65 kDa. This reduction in mobility is attributed to the successive breakage of disulfide bridges, resulting in an increasingly asymmetric molecule. Treatment of cell membranes from various brain areas with reducing agents, such as DTT, produced a concentration-dependent inhibition of opioid binding. Sensitivity to DTT inhibition varied between receptor types, mu greater than delta much greater than kappa. For mu receptors, agonist binding was considerably more sensitive to DTT than antagonist binding. Inhibition by DTT is readily reversible and is unaffected by Na+ and/or Mg2+ ions. Reversibility may be partially prevented by the inclusion of a low concentration of a reducing reagent such as glutathione which does not inhibit binding but blocks reformation of disulfide bonds. Scatchard analysis of saturation data shows that DTT causes a pronounced decrease in binding affinity with little effect on receptor number. It is suggested that disulfide bonds are essential for ligand binding and that cleavage of one or more of these bonds may play a role in opioid receptor activation by agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号