首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacology of (+/-)-hydroxybenzylisoproterenol with respect to stimulation of cyclic AMP accumulation by isolated rat fat cells and liver cells was examined. (+/-)-Hydroxybenzylisoproterenol was found to be a full agonist and twice as potent as (-)-isoproterenol in liver cells, and equipotent to (-)-isoproterenol in fat cells with regard to stimulating cyclic AMP accumulation. A study of the ability of this catecholamine to stimulate adenylate cyclase activity of broken-cell preparations revealed that (+/-)-hydroxybenzylisoproterenol was equipotent to (-)-isoproterenol in liver cell homogenates, while 3- to 4-fold more potent than (-)-isoproterenol in fat cell ghost membranes. (+/-)-Hydroxybenzylisoproterenol was also found to be as potent as (-)-isoproterenol in stimulating cyclase activity of S49 mouse lymphoma cell membranes. Competition studies of specific [125I]iodohydroxybenzylpindolol binding to liver cell membranes revealed a Kd of 10 nM for (+/-)-hydroxybenzylisoproterenol and 25 nM for (-)-isoproterenol binding to the liver beta-adrenergic receptor. Competition studies of specific (-)-[3H]dihydroalprenolol binding to fat cell membranes indicated a similar affinity of these sites for both (+/-)-hydroxybenzylisoproterenol and (-)-isoproterenol. The guanyl nucleotide Gpp(NH)p induced a shift in the curve for competition of (-)-[3H]dihydroalprenolol binding by (-)-isoproterenol to the right, but failed to do so when (+/-)-hydroxybenzylisoproterenol was the competing agonist. Properties of (+/-)-[3H]hydroxybenzylisoproterenol binding to fat cell or liver cell membranes were inconsistent with those expected of adenylate cyclase coupled beta-adrenergic receptors.  相似文献   

2.
Isoprenaline treatment of C6-glioma cells induced a fast decrease in the number of beta-adrenergic receptors as determined by binding of [3H]CGP-12177, which paralleled the decrease in the hormonally stimulated adenylate cyclase activity. The total number of receptors, as determined by binding of (-)-[3H]dihydroalprenolol, did not decrease. Separation of the beta-adrenergic receptors on a sucrose density gradient showed that the decrease in the number of receptors detectable with CGP-12177 was due to a movement of the receptors from the plasma membrane to a vesicular cell compartment. By using both (-)-[3H]dihydroalprenolol and [3H]CGP-12177 it is thus possible to differentiate between the total number of receptors and those present at the plasma membrane in an unfractionated cell lysate.  相似文献   

3.
The effect of CGP-12177, originally developed as a radioligand with antagonist properties for binding studies of beta-adrenergic receptors, was investigated in brown adipose tissue. Contrary to expectations, CGP-12177 showed clear agonist properties in experiments with hamster brown-fat cells, with a maximal effect in stimulating oxygen consumption similar to that of the physiological stimulator noradrenaline, and also with a potency similar to that of noradrenaline [EC50 (50% effective concn.) approx. 70 nM]. This value could be contrasted with the very high affinity of CGP-12177 (KD about 1 nM) for ligand-binding sites on the cells. It is therefore suggested that the high-affinity binding site may not be the one that mediates the CGP-12177-stimulated thermogenesis in isolated cells. Also, when injected into cold-adapted rats, CGP-12177 stimulated non-shivering thermogenesis similarly to noradrenaline. This observation, in conjunction with the reported low general sympathomimetic effect of CGP-12177, may indicate that CGP-12177 could be of interest for the development of anti-obesity drugs.  相似文献   

4.
Expression of ligand binding properties for an atypical beta-adrenergic receptor (beta-AR) subtype was studied during the adipose differentiation of murine 3T3-F442A cells and compared with that of the human beta 3-AR expressed in Chinese hamster ovary cells stably transfected with the human beta 3-AR gene (CHO-beta 3 cells) Emorine, L. J., Marullo, S., Briend-Sutren, M. M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A. D. (1989) Science 245, 1118-1121). 3T3-F442A adipocytes exhibited high and low affinity binding sites for (-)-4-(3-t-butylamino-2-hydroxypropoxy) [5,7-3H]benzimidazole-2-one ((-)-[3H]CGP-12177) (KD = 1.2 and 38.3 nM) and (-)-[125I]iodocyanopindolol ([125I]CYP) (KD = 47 and 1,510 pM). The high affinity sites corresponded to the classical beta 1- and beta 2-AR subtypes whereas the KD values of the low affinity sites for the radioligands were similar to those measured in CHO-beta 3 cells (KD = 28 nM and 1,890 pM for (-)-[3H]CGP12177 and [125I]CYP, respectively). These low affinity sites were undetectable in preadipocytes but represented about 90% of total beta-ARs in adipocytes. The atypical beta-AR and the human beta 3-AR add similarly low affinities (Ki = 3-5 microM) for (+/-)-(2-(3-carbamoyl-4-hydroxyphenoxy)ethylamino-3)-(4-(1-methyl- 4- trifluormethyl-2-imidazolyl)-phenoxy)-2-propanol methane sulfonate (CGP20712A) or erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminob utan-2-ol (ICI118551), highly selective beta 1- and beta 2-AR antagonists, respectively, in agreement with the poor inhibitory effect of the compounds on (-)-isoproterenol (IPR)-stimulated adenylate cyclase activity. Atypical beta-AR and beta 3-AR had an affinity about 10-50 times higher for sodium-4-(2-[2-hydroxy-2-(3-chlorophenyl)ethylamino]propyl)phenoxyace tate sesquihydrate (BRL37344) than the beta 1-AR subtype. This correlates with the potent lipolytic effect of BRL37344 in adipocytes. The rank order of potency of agonists in functional and binding studies was BRL37344 greater than IPR less than (-)-norepinephrine greater than (-)-epinephrine both in 3T3 adipocytes and CHO-beta 3 cells. As in CHO-beta 3 cells, the classical beta 1- and beta 2-antagonists CGP12177, oxprenolol, and pindolol were partial agonists in adipocytes. Although undetectable in preadipocytes, a major mRNA species of 2.3 kilobases (kb) and a minor one of 2.8 kb were observed in adipocytes by hybridization to a human beta 3-AR specific probe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Human A431 and rat glioma C6 cells exposed to isoproterenol underwent a time- and dose-dependent loss of isoproterenol-stimulated adenylate cyclase activity. Desensitization was accompanied by sequestration of beta-adrenergic receptors, which became less accessible to the hydrophilic antagonist 3H-labeled 4-(3-tert-butylamino-2-hydroxypropoxy)benzimidazole-2-one hydrochloride ([3H]CGP-12177) and redistributed from the heavier density plasma membrane fraction to a lighter density membrane fraction. Prior treatment of the cells with concanavalin A or phenylarsine oxide blocked sequestration of the receptors but not desensitization of the agonist-stimulated adenylate cyclase. The membranes from such pretreated cells were exposed to alkali to inactivate adenylate cyclase, and the receptors were transferred to a foreign adenylate cyclase by membrane fusion with polyethylene glycol. beta receptors from desensitized cells exhibited a reduced ability to maximally stimulate the foreign adenylate cyclase, but remained accessible to [3H]CGP-12177 in the fused membranes. When isoproterenol-treated cells were washed free of agonist, there was a time-dependent recovery of agonist responsiveness and [3H]CGP-12177-binding sites. Using the fusion technique, the receptors recovered their functional activity in the resensitized cells. In concanavalin A-treated cells, desensitization and resensitization appeared to occur in the absence of receptor sequestration. Finally, membranes from desensitized cells pretreated with concanavalin A were fused with polyethylene glycol and assayed for agonist-stimulated adenylate cyclase. There was no reversal of the desensitized state. Thus, the primary, essential step in the desensitization process is a reduction in functional activity of the beta-adrenergic receptor. In contrast, sequestration of the receptors is not a prerequisite, but a secondary event during desensitization.  相似文献   

6.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

7.
We have previously demonstrated that adenosine causes contraction of guinea-pig myometrium in a fashion consistent with the presence of a purinergic receptor of the A1 subtype. Incubation of guinea-pig uterine smooth muscle membranes with the stable adenosine analogue [3H]cyclohexyladenosine [( 3H]CHA) resulted in rapid, reversible association of radioligand to saturable sites. The affinity (KD) of the receptor for [3H]CHA determined from kinetic experiments (3.14 nM) is in good agreement with that determined in saturation experiments (KD = 4.5 nM). Scatchard analysis of specific [3H]CHA binding (Bmax = 79 fmol/mg protein) is consistent with a single class of binding sites for [3H]CHA. Computer analysis of competition of [3H]CHA binding by the stereoisomers of phenylisopropyl adenosine, R-PIA (KI = 5.3 nM) and S-PIA (KI = 69 nM), as well as the 5'-substituted analogue, ethylcarboxamide adenosine (NECA; KI = 4.2 nM) suggest that [3H]CHA binding occurs to a single class of receptors of the AI subtype. Contractile studies employing these agents reveal that the relative order of potency, based on ED50 values, correlates well with the relative order of competition of agonist binding, based on equilibrium binding constants. Direct assay of myometrial adenylate cyclase failed to show that adenosine receptors in this smooth muscle are coupled to adenylate cyclase. We conclude here that a smooth muscle adenosine receptor is not coupled to adenylate cyclase, yet subserves muscle contraction. These data are important in light of recent attempts to classify adenosine receptors as dual regulators of adenylate cyclase.  相似文献   

8.
HeLa cells contain receptors on their surface which are beta-adrenergic in nature. The binding of (-)-[3H]dihydroalprenolol is rapid, reversible, stereospecific and of relatively high affinity. The HeLa cells also contain an adenylate cyclase which is activated by (-)-isoproterenol greater than (-)-epinephrine greater than (-)-norepinephrine. The adenylate cyclase of HeLa is also activated by guanyl-5'-ylimidodophosphate (Gpp(NH)p), a nonhydrolyzable analogue of GTP. Inclusion of both (-)-isoproterenol and Gpp(NH)p leads to approximately additive rather than synergistic activation of adenylate cyclase. After treatment of HeLa cells with 5mM sodium butyrate there is an increase in the number of beta-adrenergic receptors, but not in their affinity, which is reflected in an increased ability of (-)-isoproterenol to activate adenylate cyclase. Other properties of the beta-adrenergic receptor including association and dissociation rates, temperature optimum of adenylate cyclase and response to Gpp(NH)p are relatively unaffected by butyrate pretreatment of the cells.  相似文献   

9.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

10.
The hydrophilic beta-adrenoceptor ligand (-)-[3H]CGP-12177 binds to intact C6 cells with a high affinity (KD approximately 0.1 nM) and with a high degree of specificity. The binding was inhibited by DL-propranolol (Ki approximately 1 nM). Treatment of cells cultured in Dulbecco's modified Eagle medium (DMEM) without fetal calf serum for 4 days with desipramine reduced the (-)-[3H]CGP-12177 specific binding in a concentration-dependent manner, a reduction from 127 to 102 fmol/mg of protein being found at a ligand concentration of 1 nM after treatment with 10 microM desipramine. Lesser effects were seen after treatment for 1 day. A similar result was found with maprotiline, and reductions in specific binding were seen after 4 days of treatment with amitriptyline, iprindole, and citalopram. The reduction in binding-site density (measured per milligram of protein to compensate for variability in cell density per well), however, was paralleled in all cases by a reduction in the rate of cell proliferation. When C6 glioma cells were cultured in Ham's medium without fetal calf serum during the antidepressant treatment period, a higher specific binding was observed than for the DMEM-cultured cells, and 10 microM desipramine was without effect on either the (-)-[3H]CGP-12177 specific binding or cell proliferation. It is concluded that the effects of the antidepressants tested upon the density of (-)-[3H]CGP-12177 specific binding sites in intact C6 cells may be secondary to the toxicity of the compounds under the conditions used.  相似文献   

11.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

12.
(-)-[3H]-Dihydroalprenolol((-)[3H]DHA) binding in the rat hypothalamus appears to possess all the characteristics expected of physiologically relevant beta-adrenergic receptors. Binding of (-)-[3H]DHA to the hypothalamic sites was rapid (k1 = 1.3 X 10(-7) min-1) and also rapidly reversible. Binding was saturable at low concentrations of ligand (approximately 50-100 nM). The dissociation constant (KD) of (-)-[3H]DHA binding determined by equilibrium analysis was 19 nM. Binding displayed beta-adrenergic specificity. beta-Adrenergic agonists inhibited binding in the following order of potency: (-)-isoproterenol congruent to (-)-epinephrine greater than (-)-norepinephrine. Specific beta-adrenergic antagonists (-)-propranol and (-)-alprenolol inhibited binding at low concentrations (KD = 25-50nM) whereas the alpha-antagonist phentolamine inhibited binding at very high concentration (KD = 42 micron). Interactions of both agonists and antagonists with the sites showed stereoselectivity. The (-)-isomers of all beta-adrenergic agents tested were more potent than their respective (+)-isomers. These results suggest that specific receptor sites for beta-adrenergic catecholamines are present in rat hypothalamus.  相似文献   

13.
Digitonin-solubilized turkey erythrocyte beta-adrenergic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack beta receptors. Incorporation of turkey beta receptors into acceptor membranes was directly proportional to the quantity of soluble protein added to the reconstitution system. Reconstituted beta receptors demonstrate saturable [125I]iodohydroxybenzylpindolol binding (Bmax = 11.1 +/- 0.8 fmol/mg, K = 77.8 +/- 8.6 pM) and stereospecificity ((-)-propranolol, K = 11.0 nM; (+)-propranolol, K = 2000 nM; (-)-isoproterenol, K = 250 nM; (+)-isoproterenol, K = 82 micro M). Reconstituted beta receptors appear to be incorporated into acceptor membranes as integral proteins. Reconstituted beta receptors cannot be extracted by high salt or pH (3 to 11); detergent is required for resolubilization of reconstituted beta receptors. Adenylate cyclase stimulation was not obtained in reconstituted membranes since acceptor membranes lack a catalytic subunit. However, guanine nucleotide regulation of agonist affinity was observed indicating a functional reconstitution. GTP (100 micro M) produces a 5-fold decrease in the affinity of isoproterenol for reconstituted beta receptors. Experiments with sulfhydryl reagents indicate that the reconstituted beta receptor couples with the guanine nucleotide regulatory protein of the acceptor membranes. These data describe the successful reconstitution of a beta receptor and indicate that the reconstituted beta receptor can interact with the GTP binding protein of human erythrocyte acceptor membranes.  相似文献   

14.
A new technique was developed to characterize the binding of a hydrophilic beta-adrenergic antagonist, [3H]CGP-12177, to 1-mm thick slices of canine cardiac tissue. This technique was used to quantify the density (Bmax) and the affinity (Kd) of these receptors in the right ventricular conus (RVC) and the left ventricle (LV) at day 1 to 6 weeks of age, and in the adult. Binding was found to be reversible, saturable, stereospecific, of high affinity, and thermolabile. There was an increase in the density of beta-adrenergic receptors between day 1 (Bmax = 2.2 +/- 0.3 fmol/mg tissue in RVC and 2.9 +/- 0.8 fmol/mg tissue in the LV) and 2 weeks of age postnatally, after which it remained constant until 6 weeks of age (Bmax = 7.5 +/- 0.4 and 6.8 +/- 0.9 fmol/mg tissue in RVC and LV, respectively); however, by 6 weeks of age it had not reached adult levels (10.3 +/- 1.0 fmol/mg tissue). The affinity of these receptors did not change between early neonatal life (Kd = 1.3 +/- 0.4 nM) and adulthood (Kd = 1.4 +/- 0.2 nM). The density of beta-adrenergic receptors in the RVC was similar to that in the LV. This new method of quantifying beta-adrenergic receptors in cardiac tissue is simple and fast, and requires minimal tissue handling. It proved to be useful in studying the development of cardiac beta-adrenergic receptors with age.  相似文献   

15.
(minus)-Alprenolol, a potent, competitive beta-adrenergic antagonist labeled to high specific activity with tritium (17 Ci per mmol), has been used to identify binding sites in frog erythrocyte membranes having many of the characteristics to be expected of the beta-adrenergic receptors which are linked to adenylate cyclase in these membranes. The chromatographic behavior and biological activity of the labeled and native drug were essentially identical. (minus)-Alprenolol and (minus)-[3-H]alprenolol both competitively antagonize isoproterenol stimulation of frog erythrocyte membrane adenylate cyclase with a KD OF 5 TO 10 NM. (minus)-[3-H]Alprenolol binding to sites in the frog erythrocyte membranes was studied by a centrifugal assay. At 37 degrees, equilibrium binding was established within 5 min and the half-time for dissociation of bound (minus)-[3-H]alprenolol was approximately 30 s. This rapid onset and dissociation of (minus)-[3-H]alprenolol binding was in good agreement with the rapid onset of action of beta-adrenergic agonists and antagonists on the frog erythrocyte adenylate cyclase. (minus)-[3-H]Alprenolol binding was saturable. There were 0.25 to 0.35 pmol of (minus)-[3-H]alprenolol binding sites per mg of protein corresponding to 1300 to 1800 binding sites per intact frog erythrocyte. The binding sites showed half-maximal saturation at 5.0 to 10 nM (minus)-[3-H]alprenolol, which is in good agreement with the KD for alprenolol antagonism of isoproterenol stimulation of adenylate cyclase. The (minus)-[3-H]alprenolol binding sites exhibited strict stereospecificity. (minus)-Stereoisomers of beta-adrenergic antagonists or agonists were approximately 2 orders of magnitude more potent than the (+)-stereoisomers in competing for the binding sites. Comparable stereospecificity was apparent when agonists and antagonists were tested for their ability to interact with the adenylate cyclase-coupled beta-adrenergic receptors in the membranes. Potency series of 11 agonists and 13 antagonists for inhibition of binding and interaction with adenylate cyclase were identical and were characteristic of a beta2-adrenergic receptor. A variety of nonphysiologically active compounds containing a catechol moiety as well as several metabolites and cholinergic agents did not inhibit (minus)-[3-H]alprenolol binding or interact significantly as agonists or antagonists with the adenylate cyclase. The (minus)-[3-H]alprenolol binding sites studied appear to be equivalent to the beta-adrenergic receptor binding sites in the frog erythrocyte membranes.  相似文献   

16.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

17.
Iodohydroxybenzylpindolol (I-HYP) is a chemically defined, high affinity, high specific activity beta-adrenergic antagonist that interacts with a single site on the turkey erythrocyte membrane. Study of the interaction of agonists, antagonists, and congeners with this site and concomitant alterations in adenylate cyclase activity have been carried out in the presence of high or low concentrations of guanine nucleotide. The results help clarify the relationship between binding and activation or inhibition of adenylate cyclase and the role of guanine nucleotides in modulating this interaction. There is a close correlation between binding constants (KD) for inhibitors determined by analysis of competitive displacement of 125I-HYP from receptor, and apparent affinities (Ki) for inhibition of adenylate cyclase. For activators, however, there is up to a 10-fold difference between KD and apparent affinity (KDapp) for adenylate cyclase activation at low guanine nucleotide concentration (10(-6) M guanylylimidodiphosphate). This difference is virtually abolished by employing higher nucleotide concentrations (10(-5) M guanylylimidodiphosphate) without significantly altering receptor affinity. This suggests that guanine nucleotides act by modulating receptor-enzyme interactions rather than hormone-receptor interactions. Moreover, several beta-adrenergic analogs previously shown to have no effect on adenylate cyclase in the absence of nucleotide, are partial agonists in the presence of 10(-5) M guanylylimidodiphosphate. Parallel analyses for a series of agonists and antagonists for adenylate cyclase activation and receptor interaction show affinities for levorotatory isomers generally 100-fold greater than for dextrorotatory isomers. Thus stereoconfiguration at the beta carbon clearly influences affinity of agonists or antagonists. Affinity is also importantly influenced by the nature of the aromatic ring as well as the N-alkyl group. The complexity of structure-function relationships for these compounds requires a redefinition of structural requirements for beta-adrenergic activity.  相似文献   

18.
1. In order to determine the selectivity of classical and novel adrenergic agents for alpha 1- and beta-adrenergic receptors in brown adipose tissue, the ability of these agents to compete for binding sites labelled with [3H]prazosin and [3H]CGP-12177, respectively, was investigated. 2. The beta-antagonist propranolol, known to inhibit norepinephrine-induced respiration in micromolar concentrations, bound to the [3H]CGP-12177 site with nanomolar affinity. 3. Among agonists, only isoprenaline showed high selectivity for beta-receptors, and only oxymetazoline for alpha 1-receptors. 4. Unexpectedly, the novel thermogenic agonists (BRL-agonists), shown to be potent and selective stimulators of brown fat thermogenesis, were unselective and bound only with low affinity to the [3H]CGP-12177 binding sites. 5. These results suggest that the beta-adrenergic binding site in brown adipose tissue identified here with [3H]CGP-12177 may not be the one (or not the only one) coupled to thermogenesis.  相似文献   

19.
The sites of specific binding of 3H-L-dihydroalprenolol (3H-DHA) were identified on the surface of ascites sarcoma 37 cells, using competitive displacement and binding of the beta-adrenergic antagonists, 3H-DHA and L-propranolol. These binding sites possessed the properties of beta-adrenergic receptors coupled with adenylate cyclase. Analysis of 3H-DHA binding by the Scatchard method revealed the presence of beta-adrenergic receptors of two types, i. e., with a high (Kd = 0.9-1.0 nM) and low (Kd = 15-20 nM) affinity for 3H-DHA. The number of high affinity receptors was (5.0-7.5) X 10(3); that of low affinity receptors was (20-30) X 10(3) on a per cell basis. Sarcolysine at concentrations of 1-10 microM displaced receptor-bound 3H-DHA, competed with the ligand for the common binding sites and caused, similar to isoproterenol, a short-term elevation of the intracellular cAMP content. Sarcolysine within the same concentration range (2.5-25 microM) caused non-competitive inhibition of the cAMP phosphodiesterase (PDE2) activity of plasma membranes isolated from ascites sarcoma 37 cells. The data obtained point to the functional coupling between beta-adrenergic receptors, adenylate cyclase and membraneous PDE2 of tumour cells as well as to its possible role in the antitumour effect of sarcolysine.  相似文献   

20.
Characterization of beta-adrenergic binding sites on rodent Leydig cells   总被引:1,自引:0,他引:1  
A radioligand binding technique was used to study beta-adrenergic binding sites on rodent Leydig cells. Beta-Adrenergic binding sites were found on Leydig cells in both the rat and mouse. Binding of [3H]CGP-12177 [4-(3-t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one] to purified rat Leydig cells was found to be saturable, temperature and time dependent, stereospecific, and readily reversible by the beta-adrenergic antagonist propranolol. Scatchard analysis revealed the presence of high-affinity sites with an apparent dissociation constant (Kd) of 0.79 +/- 0.22 nM and maximal binding capacity (Bmax) of 1716 +/- 245 sites per rat Leydig cell. Competition of various beta-adrenergic agonists and antagonists with [3H]CGP indicates an order of potency of L-isoproterenol greater than epinephrine = salbutamol greater than norepinephrine greater than D-isoproterenol and dl-propranolol = ICI 118,551 much greater than atenolol, respectively. These observations suggest that the binding sites are predominantly of the beta 2-receptor subtype. Incubation of freshly isolated rat Leydig cells with luteinizing hormone (100 ng/ml) caused consistent stimulation of androgen production, but only occasional stimulation by the beta-agonist isoproterenol (10 microM) was observed. However, these cells consistently responded to the beta-agonist after 3 h in primary cultures. These findings indicate that rodent Leydig cells possess beta-adrenergic binding sites and point out a possible dissociation between receptor recognition and physiologic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号