首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that oscillating magnet array-based nanomagnetic transfection significantly improves transfection efficiency in both human prenatal cardiac progenitor cells and adult cardiomyocytes when compared to static magnetofection, cationic lipid reagents and electroporation, while maintaining high cell viability. In addition, transfection of adult cardiomyocytes was improved further by seeding the cells onto Collagen I-coated plates, with transfection efficiencies of up to 49% compared to 24% with lipid reagents and 19% with electroporation. These results demonstrate that oscillating nanomagnetic transfection far outperforms other non-viral transfection techniques in these important cells.  相似文献   

2.
The discovery of RNAi pathway in eukaryotes and the subsequent development of RNAi agents, such as siRNA and shRNA, have achieved a potent method for silencing specific genes1-8 for functional genomics and therapeutics. A major challenge involved in RNAi based studies is the delivery of RNAi agents to targeted cells. Traditional non-viral delivery techniques, such as bulk electroporation and chemical transfection methods often lack the necessary spatial control over delivery and afford poor transfection efficiencies9-12. Recent advances in chemical transfection methods such as cationic lipids, cationic polymers and nanoparticles have resulted in highly enhanced transfection efficiencies13. However, these techniques still fail to offer precise spatial control over delivery that can immensely benefit miniaturized high-throughput technologies, single cell studies and investigation of cell-cell interactions. Recent technological advances in gene delivery have enabled high-throughput transfection of adherent cells14-23, a majority of which use microscale electroporation. Microscale electroporation offers precise spatio-temporal control over delivery (up to single cells) and has been shown to achieve high efficiencies19, 24-26. Additionally, electroporation based approaches do not require a prolonged period of incubation (typically 4 hours) with siRNA and DNA complexes as necessary in chemical based transfection methods and lead to direct entry of naked siRNA and DNA molecules into the cell cytoplasm. As a consequence gene expression can be achieved as early as six hours after transfection27. Our lab has previously demonstrated the use of microelectrode arrays (MEA) for site-specific transfection in adherent mammalian cell cultures17-19. In the MEA based approach, delivery of genetic payload is achieved via localized micro-scale electroporation of cells. An application of electric pulse to selected electrodes generates local electric field that leads to electroporation of cells present in the region of the stimulated electrodes. The independent control of the micro-electrodes provides spatial and temporal control over transfection and also enables multiple transfection based experiments to be performed on the same culture increasing the experimental throughput and reducing culture-to-culture variability. Here we describe the experimental setup and the protocol for targeted transfection of adherent HeLa cells with a fluorescently tagged scrambled sequence siRNA using electroporation. The same protocol can also be used for transfection of plasmid vectors. Additionally, the protocol described here can be easily extended to a variety of mammalian cell lines with minor modifications. Commercial availability of MEAs with both pre-defined and custom electrode patterns make this technique accessible to most research labs with basic cell culture equipment.  相似文献   

3.
Gene delivery technologies to introduce foreign genes into highly differentiated mammalian cells have improved significantly over the last few decades. Relatively new techniques such as magnetic nanoparticle-based gene transfection technology are showing great promise in terms of its high transfection efficiency and wide-ranging research applications. We have developed a novel gene delivery technique, which uses magnetic nanoparticles moving under the influence of an oscillating magnetic array. Herein we successfully introduced short interfering RNA (siRNA) against green fluorescent protein (GFP) or actin into stably-transfected GFP-HeLa cells or wild-type HeLa and rat aortic smooth muscle cells, respectively. This gene silencing technique occurred in a dose- and cell density- dependent manner, as reflected using fluorescence intensity and adhesion assays. Furthermore, using endocytosis inhibitors, we established that these magnetic nanoparticle-nucleic acid complexes, moving across the cell surface under the influence of an oscillating magnet array, enters into the cells via the caveolae-mediated endocytic pathway.  相似文献   

4.
Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy.  相似文献   

5.
We have developed a device for pinpoint delivery of chemicals, proteins, and nucleic acids into cultured cells. The principle underlying the technique is the flow of molecules from the culture medium into cells through a rupture in the plasma membrane made by a needle puncture. DNA transfection is achieved by stabbing the needle tip into the nucleus. The CellBee device can be attached to any inverted microscope, and molecular delivery can be coupled with conventional live cell imaging. Because the position of the needle relative to the targeted cultured cells is computer-controlled, efficient delivery of molecules such as rhodamine into as many as 100 HeLa cells can be completed in 10 min. Moreover, specific target cells within a single dish can be transfected with multiple DNA constructs by simple changes of culture medium containing different plasmids. In addition, the nano-sized needle tip enables gentle molecular delivery, minimizing cell damage. This method permits DNA transfection into specific hippocampal neurons without disturbing neuronal circuitry established in culture.  相似文献   

6.
In order to maximize recombinant protein expression in mammalian cells many factors need to be considered such as transfection method, vector construction, screening techniques and culture conditions. In addition, the host cell line can have a profound effect on the protein expression. However, auditioning or directly comparing host cell lines for optimal protein expression may be difficult since most transfection methods are based on random integration of the gene of interest into the host cell genome. Thus it is not possible to determine whether differences in expression between various host cell lines are due to the phenotype of the host cell itself or genetic factors such as gene copy number or gene location. To improve cell line generation, the ACE System was developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for targeted transfection and has been effectively used to rapidly generate stable CHO cell lines expressing high levels of monoclonal antibody. A key feature of the ACE System is the ability to isolate and purify ACEs containing the gene(s) of interest and transfect the same ACEs into different host cell lines. This feature allows the direct auditioning of host cells since the host cells have been transfected with ACEs that contain the same number of gene copies in the same genetic environment. To investigate this audition feature, three CHO host cell lines (CHOK1SV, CHO‐S and DG44) were transfected with the same ACE containing gene copies of a human monoclonal IgG1 antibody. Clonal cell lines were generated allowing a direct comparison of antibody expression and stability between the CHO host cells. Results showed that the CHOK1SV host cell line expressed antibody at levels of more than two to five times that for DG44 and CHO‐S host cell lines, respectively. To confirm that the ACE itself was not responsible for the low antibody expression seen in the CHO‐S based clones, the ACE was isolated and purified from these cells and transfected back into fresh CHOK1SV cells. The resulting expression of the antibody from the ACE newly transfected into CHOK1SV increased fivefold compared to its expression in CHO‐S and confirmed that the differences in expression between the different CHO host cells was due to the cell phenotype rather than differences in gene copy number and/or location. These results demonstrate the utility of the ACE System in providing a rapid and direct technique for auditioning host cell lines for optimal recombinant protein expression. Biotechnol. Bioeng. 2009; 104: 526–539 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Several cell transfection techniques have been developed in the last decades for specific applications and for various types of molecules. In this context, laser based approaches are of great interest due to their minimal invasiveness and spatial selectivity. In particular, laser induced plasmon based delivery of exogenous molecules into cells can have great impact on future applications. This approach allows high‐throughput laser transfection by excitation of plasmon resonances at gold nanoparticles non‐specifically attached to the cell membrane. In this study, we demonstrate specific gene‐knockdown by transfection of Morpholino oligos using this technique with optimized particle size. Furthermore, we evaluated the cytotoxicity of plasmonic laser treatment by various assays, including LDH activity and ROS formation. In summary, this study gives important insights into this new approach and clearly demonstrates its relevance for possible biological applications. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Electroporation is becoming more popular as a technique for transfecting neurons within intact tissues. One of the advantages of electroporation over other transfection techniques is the ability to precisely target an area for transfection. Here we highlight this advantage by describing methods to restrict transfection to either a single cell, clusters of cells, or to include large portions of the brain of the intact Xenopus tadpole. Electroporation is also an effective means of gene delivery in the retina. We have developed these techniques to examine the effects of regulated gene expression on various neuronal properties, including structural plasticity and synaptic transmission. Restriction of transfection to individual cells aids in imaging of neuronal morphology, while bulk cell transfection allows examination of the affects of gene expression on populations of cells by biochemical assays, imaging, and electrophysiological recording.  相似文献   

9.
K Lim  C B Chae 《BioTechniques》1989,7(6):576-579
Transfection efficiency of different cell types as well as promoter strength of cloned genes can be easily determined by direct assay of beta-galactosidase activity encoded from recombinant genes containing the E. coli beta-galactosidase gene. A substrate for beta-galactosidase, o-nitrophenyl-beta-D-galactopyranoside (ONPG), can be added to dishes containing the transfected cells, and the intensity of the colored enzyme product released from either the intact cell or cells lysed in the dishes can be determined. The results obtained by this assay are a reliable measure of transfection efficiency as well as promotor strength of the genes introduced into the cells. In addition, cells expressing the transfected gene can be identified and quantitated under a light microscope after incubation with X-gal. Thus, it is more convenient to use the E. coli beta-galactosidase gene than the chloramphenicol acetyltransferase gene as a reporter gene in the evaluation of DNA transfection.  相似文献   

10.
11.
The efficiency of an exogenous gene's expression was compared after its transfection and injection into various mouse cells to systematically evaluate these two gene transfer techniques. Special attention was paid to the period of transient expression. The gene used was a derivative of chicken delta-crystallin gene with the 5' end region replaced by a promoter base sequence of a retrovirus. Nuclear injection was more efficient than transfection in several respects: it was roughly one thousand times more efficient in producing gene-expressing cells than the transfection technique; it produced positive cells in every challenged cell line in contrast to the results of some unsuccessful trials found with transfection; and the maximum expression of the exogenous gene in a gene-transferred cell was much higher after injection than after transfection. With the transfection technique, use of a DNA-calcium phosphate coprecipitate was slightly more efficient than the use of DEAE-dextran. The stability of gene expression in transfected and nuclear-injected cells differed greatly: Expression of the exogenous gene in transfected cells was transmitted to 92% of the daughter cells per division, whereas its expression in injected cells was transmitted to only 32% of the daughter cells. This great difference in stability probably reflects different states of the major fraction of the exogenous gene: integration into chromosomes in transfected cells versus extrachromosomal localization in injected cells.  相似文献   

12.
Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells   总被引:5,自引:0,他引:5  
RNA interference, the inhibition of gene expression by double-stranded RNA, provides a powerful tool for functional studies once the sequence of a gene is known. In most mammalian cells, only short molecules can be used because long ones induce the interferon pathway. With the identification of a proper target sequence, the penetration of the oligonucleotides constitutes the most serious limitation in the application of this technique. Here we show that a small interfering RNA (siRNA) targeting the mRNA of the kinesin Eg5 induces a rapid mitotic arrest and provides a convenient assay for the optimization of siRNA transfection. Thus, dose responses can be established for different transfection techniques, highlighting the great differences in response to transfection techniques of various cell types. We report that the calcium phosphate precipitation technique can be an efficient and cost-effective alternative to Oligofectamine in some adherent cells, while electroporation can be efficient for some cells growing in suspension such as hematopoietic cells and some adherent cells. Significantly, the optimal parameters for the electroporation of siRNA differ from those for plasmids, allowing the use of milder conditions that induce less cell toxicity. In summary, a single siRNA leading to an easily assayed phenotype can be used to monitor the transfection of siRNA into any type of proliferating cells of both human and murine origin.  相似文献   

13.
Among techniques commonly used to deliver bioactive molecules into living cells, microinjection is a very efficient method. Microinjection has been used extensively for gene transfer into different cell types. We applied the microinjection technique to the adult rat ventricular cardiac muscle cells (AVC) in primary culture and optimized microinjection parameters and the appropriate cell culture conditions. We also optimized the use of particular agents (i.e. 2,3-butanedione monoxime, verapamil) for the prevention of the cell damage caused by the micropuncture. We obtained the expression of a CMV--galactosidase reporter gene in up to 20% of the injected cells with efficient maintenance of long term cell viability. Under our experimental conditions direct microinjection is a very advantageous technique to transfer macromolecules into living adult cardiac muscle cells and a powerful system to study and manipulate the biochemistry and molecular biology of the cardiac myocyte.  相似文献   

14.
该文探讨了关于EL转染试剂转染Hsa-miR-6743质粒至食管鳞癌细胞转染效果的影响因素.以食管鳞癌细胞株Eca-109、TE-1和Eca-9706为研究对象,GFP标记的Hsa-miR-6743为报告基因,通过倒置荧光显微镜检测荧光信号优化转染试剂和质粒比值.结果表明,食管鳞癌细胞的种类影响EL转染试剂的转染效果,...  相似文献   

15.
16.
Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10(-5) to 10(-2) per infected cell. These targeting frequencies are 1-4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in ~10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.  相似文献   

17.
18.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

19.
Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号