首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most eukaryotic mRNAs require the cap-binding complex elF4F for efficient initiation of translation, which occurs as a result of ribosomal scanning from the capped 5' end of the mRNA to the initiation codon. A few cellular and viral mRNAs are translated by a cap and end-independent mechanism known as internal ribosomal entry. The internal ribosome entry site (IRES) of classical swine fever virus (CSFV) is approximately 330 nt long, highly structured, and mediates internal initiation of translation with no requirement for elF4F by recruiting a ribosomal 43S preinitiation complex directly to the initiation codon. The key interaction in this process is the direct binding of ribosomal 40S subunits to the IRES to form a stable binary complex in which the initiation codon is positioned precisely in the ribosomal P site. Here, we report the results of analyses done using enzymatic footprinting and mutagenesis of the IRES to identify structural components in it responsible for precise binding of the ribosome. Residues flanking the initiation codon and extending from nt 363-391, a distance equivalent to the length of the 40S subunit mRNA-binding cleft, were strongly protected from RNase cleavage, as were nucleotides in the adjacent pseudoknot and in the more distal subdomain IIId1. Ribosomal binding and IRES-mediated initiation were abrogated by disruption of helix 1b of the pseudoknot and very severely reduced by mutation of the protected residues in IIId1 and by disruption of domain IIIa. These observations are consistent with a model for IRES function in which binding of the region flanking the initiation codon to the decoding region of the ribosome is determined by multiple additional interactions between the 40S subunit and the IRES.  相似文献   

2.
Translation of hepatitis C viral proteins requires an internal ribosome entry site (IRES) located in the 5' untranslated region of the viral mRNA. The core domain of the hepatitis C virus (HCV) IRES contains a four-way helical junction that is integrated within a predicted pseudoknot. This domain is required for positioning the mRNA start codon correctly on?the 40S ribosomal subunit during translation initiation. Here, we present the crystal structure of this RNA, revealing a complex double-pseudoknot fold?that establishes the alignment of two helical elements on either side of the four-helix junction. The conformation of this core domain constrains the open reading frame's orientation for positioning on the 40S ribosomal subunit. This structure, representing the last major domain of HCV-like IRESs to be determined at near-atomic resolution, provides the basis for a comprehensive cryoelectron microscopy-guided model of the intact HCV IRES and its interaction with 40S ribosomal subunits.  相似文献   

3.
Ribosome recruitment to eukaryotic mRNAs is generally thought to occur by a scanning mechanism, whereby the 40S ribosomal subunit binds in the vicinity of the 5'cap structure of the mRNA and scans until an AUG codon is encountered in an appropriate sequence context. Study of the picornaviruses allowed the characterization of an alternative mechanism of translation initiation. Picornaviruses can initiate translation via an internal ribosome entry segment (IRES), an RNA structure that directly recruits the 40S ribosomal subunits in a cap and 5' end independent fashion. Since its discovery, the notion of IRESs has extended to a number of different virus families and cellular RNAs. This review summarizes features of both cap-dependent and IRES-dependent mechanisms of translation initiation and discusses the role of cis-acting elements, which include the 5' cap, the 5'-untranslated region (UTR) and the poly(A) tail as well as the possible roles of IRESs as part of a cellular stress response mechanism and in the virus replication cycle.  相似文献   

4.
The pathway of HCV IRES-mediated translation initiation   总被引:12,自引:0,他引:12  
Otto GA  Puglisi JD 《Cell》2004,119(3):369-380
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.  相似文献   

5.
Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5' untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.  相似文献   

6.
Spahn CM  Jan E  Mulder A  Grassucci RA  Sarnow P  Frank J 《Cell》2004,118(4):465-475
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.  相似文献   

7.
Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex.  相似文献   

8.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

9.
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the ~ 200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The ~ 300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation.  相似文献   

10.
Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.  相似文献   

11.
Sequence elements that can function as internal ribosome entry sites (IRES) have been identified in 5' noncoding regions of certain uncapped viral and capped cellular mRNA molecules. However, it has remained largely unknown whether IRES elements are functional when located in their natural capped mRNAs. Therefore, the polysomal association and translation of several IRES-containing cellular mRNAs was tested under conditions that severely inhibited cap-dependent translation, that is, after infection with poliovirus. It was found that several known IRES-containing mRNAs, such as BiP and c-myc, were both associated with the translation apparatus and translated in infected cells when cap-dependent translation of most host-cell mRNAs was blocked, indicating that the IRES elements were functional in their natural mRNAs. Curiously, the mRNAs that encode eukaryotic initiation factor 4GI (eIF4GI) and 4GII (eIF4GII), two proteins with high identity and similar functions in the initiation of cap-dependent translation, were both associated with polysomes in infected cells. The 5'-end sequences of eIF4GI mRNA were isolated from a cDNA expression library and shown to function as an internal ribosome entry site when placed into a dicistronic mRNA. These findings suggest that eIF4G proteins can be synthesized at times when 5' cap-dependent mRNA translation is blocked, supporting the notion that eIF4G proteins are needed in both 5' cap-independent and 5' cap-dependent translational initiation mechanisms.  相似文献   

12.
Translational initiation of hepatitis C virus (HCV) genome RNA occurs via its highly structured 5' noncoding region called the internal ribosome entry site (IRES). Recent studies indicate that HCV IRES and 40 S ribosomal subunit form a stable binary complex that is believed to be important for the subsequent assembly of the 48 S initiation complex. Ribosomal protein (rp) S9 has been suggested as the prime candidate protein for binding of the HCV IRES to the 40 S subunit. RpS9 has a molecular mass of approximately 25 kDa in UV cross-linking experiments. In the present study, we examined the approximately 25-kDa proteins of the 40 S ribosome that form complexes with the HCV IRES upon UV cross-linking. Immunoprecipitation with specific antibodies against two 25-kDa 40 S proteins, rpS5 and rpS9, clearly identified rpS5 as the protein bound to the IRES. Thus, our results support rpS5 as the critical element in positioning the HCV RNA on the 40 S ribosomal subunit during translation initiation.  相似文献   

13.
Kim JH  Park SM  Park JH  Keum SJ  Jang SK 《The EMBO journal》2011,30(12):2454-2464
Translation of most mRNAs is suppressed under stress conditions. Phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF2), which delivers initiator tRNA (Met-tRNA(i)) to the P site of the 40S ribosomal subunit, is responsible for such translational suppression. However, translation of hepatitis C viral (HCV) mRNA is refractory to the inhibitory effects of eIF2α phosphorylation, which prevents translation by disrupting formation of the eIF2-GTP-Met-tRNA(i) ternary complex. Here, we report that eIF2A, an alternative initiator tRNA-binding protein, has a key role in the translation of HCV mRNA during HCV infection, in turn promoting eIF2α phosphorylation by activating the eIF2α kinase PKR. Direct interaction of eIF2A with the IIId domain of the HCV internal ribosome entry site (IRES) is required for eIF2A-dependent translation. These data indicate that stress-independent translation of HCV mRNA occurs by recruitment of eIF2A to the HCV IRES via direct interaction with the IIId domain and subsequent loading of Met-tRNA(i) to the P site of the 40S ribosomal subunit.  相似文献   

14.
Some studies suggest that the hepatitis C virus (HCV) internal ribosome entry site (IRES) requires downstream 5' viral polyprotein-coding sequence for efficient initiation of translation, but the role of this RNA sequence in internal ribosome entry remains unresolved. We confirmed that the inclusion of viral sequence downstream of the AUG initiator codon increased IRES-dependent translation of a reporter RNA encoding secretory alkaline phosphatase, but found that efficient translation of chloramphenicol acetyl transferase (CAT) required no viral sequence downstream of the initiator codon. However, deletion of an adenosine-rich domain near the 5' end of the CAT sequence, or the insertion of a small stable hairpin structure (deltaG = -18 kcal/mol) between the HCV IRES and CAT sequences (hpCAT) substantially reduced IRES-mediated translation. Although translation could be restored to both mutants by the inclusion of 14 nt of the polyprotein-coding sequence downstream of the AUG codon, a mutational analysis of the inserted protein-coding sequence demonstrated no requirement for either a specific nucleotide or amino acid-coding sequence to restore efficient IRES-mediated translation to hpCAT. Similar results were obtained with the structurally and phylogenetically related IRES elements of classical swine fever virus and GB virus B. We conclude that there is no absolute requirement for viral protein-coding sequence with this class of IRES elements, but that there is a requirement for an absence of stable RNA structure immediately downstream of the AUG initiator codon. Stable RNA structure immediately downstream of the initiator codon inhibits internal initiation of translation but, in the case of hpCAT, did not reduce the capacity of the RNA to bind to purified 40S ribosome subunits. Thus, stable RNA structure within the 5' proximal protein-coding sequence does not alter the capacity of the IRES to form initial contacts with the 40S subunit, but appears instead to prevent the formation of subsequent interactions between the 40S subunit and viral RNA in the vicinity of the initiator codon that are essential for efficient internal ribosome entry.  相似文献   

15.
Lentiviruses, the prototype of which is HIV-1, can initiate translation either by the classical cap-dependent mechanism or by internal recruitment of the ribosome through RNA domains called IRESs (internal ribosome entry sites). Depending on the virus considered, the mechanism of IRES-dependent translation differs widely. It can occur by direct binding of the 40S subunit to the mRNA, necessitating a subset or most of the canonical initiation factors and/or ITAF (IRES trans-acting factors). Nonetheless, a common feature of IRESs is that ribosomal recruitment relies, at least in part, on IRES structural determinants. Lentiviral genomic RNAs present an additional level of complexity, as, in addition to the 5'-UTR (untranslated region) IRES, the presence of a new type of IRES, embedded within Gag coding region was described recently. This IRES, conserved in all three lentiviruses examined, presents conserved structural motifs that are crucial for its activity, thus reinforcing the link between RNA structure and function. However, there are still important gaps in our understanding of the molecular mechanism underlying IRES-dependent translation initiation of HIV, including the determination of the initiation factors required, the dynamics of initiation complex assembly and the dynamics of the RNA structure during initiation complex formation. Finally, the ability of HIV genomic RNA to initiate translation through different pathways questions the possible mechanisms of regulation and their correlation to the viral paradigm, i.e. translation versus encapsidation of its genomic RNA.  相似文献   

16.
17.
Two exceptional mechanisms of eukaryotic translation initiation have recently been identified that differ fundamentally from the canonical factor-mediated, end-dependent mechanism of ribosomal attachment to mRNA. Instead, ribosomal 40S subunits bind in a factor-independent manner to the internal ribosomal entry site (IRES) in an mRNA. These two mechanisms are exemplified by initiation on the unrelated approximately 300 nt.-long Hepatitis C virus (HCV) IRES and the approximately 200 nt.-long cricket paralysis virus (CrPV) intergenic region (IGR) IRES, respectively. Ribosomal binding involves interaction with multiple non-contiguous sites on these IRESs, and therefore also differs from the factor-independent attachment of prokaryotic ribosomes to mRNA, which involves base-pairing to the linear Shine-Dalgarno sequence. The HCV IRES binds to the solvent side of the 40S subunit, docks a domain of the IRES into the ribosomal exit (E) site and places the initiation codon in the ribosomal peptidyl (P) site. Subsequent binding of eIF3 and the eIF2-GTP/initiator tRNA complex to form a 48S complex is followed by subunit joining to form an 80S ribosome. The CrPV IRES binds to ribosomes in a very different manner, by occupying the ribosomal E and P sites in the intersubunit cavity, thereby excluding initiator tRNA. Ribosomes enter the elongation stage of translation directly, without any involvement of initiator tRNA or initiation factors, following recruitment of aminoacyl-tRNA to the ribosomal aminoacyl (A) site and translocation of it to the P site.  相似文献   

18.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

19.
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号