首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I allergy is characterized by the development of an initial Th2-dependent allergen-specific IgE response, which is boosted upon a subsequent allergen encounter. Although the immediate symptoms of allergy are mainly IgE-mediated, allergen-specific T cell responses contribute to the late phase as well as to the chronic manifestations of allergy. This study investigates the potential of costimulation blockade with CTLA4Ig and an anti-CD154 mAb for modifying the allergic immune response to the major timothy grass pollen allergen Phl p 5 in a mouse model. BALB/c mice were treated with the costimulation blockers at the time of primary sensitization to the Phl p 5 allergen or at the time of a secondary allergen challenge. Costimulation blockade (CTLA4Ig plus anti-CD154 or anti-CD154 alone) at the time of sensitization prevented the development of allergen-specific IgE, IgM, IgG, and IgA responses compared with untreated but sensitized mice. However, costimulation blockade had no influence on established IgE responses in sensitized mice. Immediate-type reactions as analyzed by a rat basophil leukemia cell mediator release assay were only suppressed by early treatment but not by a costimulation blockade after sensitization. CTLA4Ig given alone failed to suppress both the primary and the secondary allergen-specific Ab responses. Allergen-specific T cell activation was suppressed in mice by early as well as by a late costimulation blockade, suggesting that IgE responses in sensitized mice are independent of T cell help. Our results indicate that T cell suppression alone without active immune regulation or a shifting of the Th2/Th1 balance is not sufficient for the treatment of established IgE responses in an allergy.  相似文献   

2.
Previous activation of effector Th2 cells is central to the development of allergic inflammatory responses. We have observed that priming of allergen-specific Th2 cells in C57BL/6 or B10.A mice with allergen delivered via the i.p. or s.c. routes results in very different outcomes following subsequent airway exposure to the same allergen. Systemic allergen immunization (via the i.p. route) resulted in the formation of a lung-resident population of allergen-specific T cells, and mice developed severe allergic airway inflammation in response to inhaled allergen. The localization of cells to the lung did not require the presence of antigen at this site, but reflected a large pool of circulating activated allergen-specific T cells. In contrast, localized immunization (via the s.c. route) resulted in a small T-cell response restricted to the draining lymph node, and mice were not responsive to inhaled allergen. These data indicate that prior sensitization to an allergen alone was not sufficient for the induction of allergic inflammation; rather, responsiveness was largely determined by precursor frequency and tissue localization of the allergen-specific effector Th2 cells.  相似文献   

3.
Almost 90% of grass pollen-allergic patients are sensitized against group 5 grass pollen allergens. We isolated a monoclonal human IgE Fab out of a combinatorial library prepared from lymphocytes of a grass pollen-allergic patient and studied its interaction with group 5 allergens. The IgE Fab cross-reacted with group 5A isoallergens from several grass and corn species. By allergen gene fragmentation we mapped the binding site of the IgE Fab to a 11.2-kDa N-terminal fragment of the major timothy grass pollen allergen Phl p 5A. The IgE Fab-defined Phl p 5A fragment was expressed in Escherichia coli and purified to homogeneity. Circular dichroism analysis revealed that the rPhl p 5A domain, as well as complete rPhl p 5A, assumed a folded conformation consisting predominantly of an alpha helical secondary structure, and exhibited a remarkable refolding capacity. It reacted with serum IgE from 76% of grass pollen-allergic patients and revealed an extremely high allergenic activity in basophil histamine release as well as skin test experiments. Thus, the rPhl p 5A domain represents an important allergen domain containing several IgE epitopes in a configuration optimal for efficient effector cell activation. We suggest the rPhl p 5A fragment and the corresponding IgE Fab as paradigmatic tools to explore the structural requirements for highly efficient effector cell activation and, perhaps later, for the development of generally applicable allergen-specific therapy strategies.  相似文献   

4.
Group 1 grass pollen allergens are recognized by IgE antibodies of almost 40% of allergic individuals and therefore belong to the most important elicitors of Type I allergy worldwide. We have previously isolated the cDNA coding for the group 1 allergen from timothy grass, Phl p 1, and demonstrated that recombinant Phl p 1 contains most of the B cell as well as T cell epitopes of group 1 allergens from a variety of grass and corn species. Here we determine continuous B cell epitopes of Phl p 1 by gene fragmentation. IgE antibodies of grass pollen allergic patients identified five continuous epitope-containing areas that on an average bound 40% of Phl p 1-specific IgE antibodies and were stably recognized in the course of disease. In contrast to untreated patients, patients undergoing grass pollen immunotherapy started to mount IgG(4) antibodies to the recombinant IgE-defined fragments in the course of immunotherapy. The protective role of these IgG(4) antibodies is demonstrated by observations that 1) increases in rPhl p 1 fragment-specific IgG(4) were in parallel with decreases in Phl p 1-specific IgE, and 2) preincubation of rPhl p 1 with patients sera containing rPhl p 1 fragment-specific IgG(4) blocked histamine release from basophils of an untreated grass pollen allergic patient. We propose to use recombinant Phl p 1 fragments for active immunotherapy in order to induce protective IgG responses against IgE epitopes in grass pollen allergic patients. This concept may be applied for the development of allergy vaccines whenever the primary sequence or structure of an allergen is available.  相似文献   

5.
T cell reactivity with allergoids: influence of the type of APC   总被引:2,自引:0,他引:2  
The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.  相似文献   

6.
Fel d I is the major cat allergen that induces asthma and allergic rhinitis in humans. To investigate the mechanism of allergic responses to this allergen, a mouse model was developed. Mice sensitized to chain 1 of Fel d I exhibited T cell responses, B cell responses, and mast cell responses when challenged with the protein. Subcutaneous injections of peptides containing the dominant T cell epitopes of the allergen induced T cell tolerance in presensitized mice. When challenged with the allergen intratracheally, these tolerized mice produced a decreased amount of histamine in vivo. The decrease in histamine release was not solely dependent on the reduction of allergen-specific IgE. These data show that mast cell activity in mice with an ongoing sensitivity to allergen can be regulated through peptide-induced T cell tolerance.  相似文献   

7.
Worldwide more than 200 million individuals are allergic to group 1 grass pollen allergens. We have used the major timothy grass pollen allergen Phl p 1, which cross-reacts with most grass-, corn-, and monocot-derived group 1 allergens to develop a generally applicable strategy for the production of hypoallergenic allergy vaccines. On the basis of the experimentally determined B cell epitopes of Phl p 1, we have synthesized five synthetic peptides. These peptides are derived from the major Phl p 1 IgE epitopes and were between 28-32 amino acids long. We demonstrate by nuclear magnetic resonance that the peptides exhibit no secondary and tertiary structure and accordingly failed to bind IgE antibodies from grass pollen allergic patients. The five peptides, as well as an equimolar mixture thereof, lacked allergenic activity as demonstrated by basophil histamine release and skin test experiments in grass pollen allergic patients. When used as immunogens in mice and rabbits, the peptides induced protective IgG antibodies, which recognized the complete Phl p 1 wild-type allergen and group 1 allergens from other grass species. Moreover, peptide-induced antibodies inhibited the binding of grass pollen allergic patients IgE antibodies to the wild-type allergen. We thus demonstrate that synthetic hypoallergenic peptides derived from B cell epitopes of major allergens represent safe vaccine candidates for the treatment of IgE- mediated allergies.  相似文献   

8.
T regulatory cells and IL-10 have been implicated in the mechanism of immunotherapy in patients with systemic anaphylaxis following bee stings. We studied the role of IL-10 in the induction of clinical, cellular, and humoral tolerance during immunotherapy for local mucosal allergy in subjects with seasonal pollinosis. Local and systemic IL-10 responses and serum Ab concentrations were measured before/after a double-blind trial of grass pollen (Phleum pratense, Phl P) immunotherapy. We observed local increases in IL-10 mRNA-positive cells in the nasal mucosa after 2 years of immunotherapy, but only during the pollen season. IL-10 protein-positive cells were also increased and correlated with IL-10 mRNA(+) cells. These changes were not observed in placebo-treated subjects or in healthy controls. Fifteen and 35% of IL-10 mRNA signals were colocalized to CD3(+) T cells and CD68(+) macrophages, respectively, whereas only 1-2% of total CD3(+) cells and 4% of macrophages expressed IL-10. Following immunotherapy, peripheral T cells cultured in the presence of grass pollen extract also produced IL-10. Immunotherapy resulted in blunting of seasonal increases in serum allergen Phl p 5-specific IgE, 60- to 80-fold increases in Phl p 5-specific IgG, and 100-fold increases in Phl p 5-specific IgG4. Post-immunotherapy serum exhibited inhibitory activity, which coeluted with IgG4, and blocked IgE-facilitated binding of allergen-IgE complexes to B cells. Both the increases in IgG and the IgG "blocking" activity correlated with the patients' overall assessment of improvement. Thus, grass pollen immunotherapy may induce allergen-specific, IL-10-dependent "protective" IgG4 responses.  相似文献   

9.
Respiratory tolerance is inhibited by the administration of corticosteroids   总被引:3,自引:0,他引:3  
Corticosteroids constitute the most effective current anti-inflammatory therapy for acute and chronic forms of allergic diseases and asthma. Corticosteroids are highly effective in inhibiting the effector function of Th2 cells, eosinophils, and epithelial cells. However, treatment with corticosteroids may also limit beneficial T cell responses, including respiratory tolerance and the development of regulatory T cells (T(Reg)), which actively suppress inflammation in allergic diseases. To examine this possibility, we investigated the effects of corticosteroid administration on the development of respiratory tolerance. Respiratory exposure to Ag-induced T cell tolerance and prevented the subsequent development of allergen-induced airway hyperreactivity. However, treatment with dexamethasone during the delivery of respiratory Ag prevented tolerance, such that allergen sensitization and severe airway hyperreactivity subsequently occurred. Treatment with dexamethasone during respiratory exposure to allergen eliminated the development of IL-10-secreting dendritic cells, which was required for the induction of IL-10-producing allergen-specific T(Reg) cells. Therefore, because allergen-specific T(Reg) cells normally develop to prevent allergic disease and asthma, our results suggest that treatment with corticosteroids, which limit the development of T(Reg) cells and tolerance to allergens, could enhance subsequent Th2 responses and aggravate the long-term course of allergic diseases and asthma.  相似文献   

10.
This study tested the feasibility of oral immunotherapy for bronchial asthma using a newly developed subunit vaccine in which a fragment (p45-145) of mite allergen (Der p 1) containing immunodominant human and mouse T cell epitopes was encapsulated in endoplasmic reticulum-derived protein bodies of transgenic (Tg) rice seed. Allergen-specific serum immunoglobulin responses, T cell proliferation, Th1/Th2 cytokine production, airway inflammatory cell infiltration, bronchial hyper-responsiveness (BHR) and lung histology were investigated in allergen-immunized and -challenged mice. Prophylactic oral vaccination with the Tg rice seeds clearly reduced the serum levels of allergen-specific IgE and IgG. Allergen-induced CD4(+) T cell proliferation and production of Th2 cytokines in vitro, infiltration of eosinophils, neutrophils and mononuclear cells into the airways and BHR were also inhibited by oral vaccination. The effects of the vaccine were antigen-specific immune response because the levels of specific IgE and IgG in mice immunized with Der f 2 or ovalbumin were not significantly suppressed by oral vaccination with the Der p 1 expressing Tg rice. Thus, the vaccine does not induce nonspecific bystander suppression, which has been a problem with many oral tolerance regimens. These results suggest that our novel vaccine strategy is a promising approach for allergen-specific oral immunotherapy against allergic diseases including bronchial asthma.  相似文献   

11.
CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.  相似文献   

12.
Profilins are highly cross-reactive allergens in pollens and plant food. In a paradigmatic approach, the cDNA coding for timothy grass pollen profilin, Phl p 12, was used as a template to develop a new strategy for engineering an allergy vaccine with low IgE reactivity. Non-IgE-reactive fragments of Phl p 12 were identified by synthetic peptide chemistry and restructured (rs) as a new molecule, Phl p 12-rs. It comprised the C terminus of Phl p 12 at its N terminus and the Phl p 12 N terminus at its C terminus. Phl p 12-rs was expressed in Escherichia coli and purified to homogeneity. Determination of secondary structure by circular dichroism indicated that the restructuring process had reduced the IgE-reactive alpha-helical contents of the protein but retained its beta-sheet conformation. Phl p 12-rs exhibited reduced IgE binding capacity and allergenic activity but preserved T cell reactivity in allergic patients. IgG Abs induced by immunization of mice and rabbits with Phl p 12-rs cross-reacted with pollen and food-derived profilins. Recombinant Phl p 12-rs, rPhl p 12-rs, induced less reaginic IgE to the wild-type allergen than rPhl p 12. However, the rPhl p 12-rs-induced IgGs inhibited allergic patients' IgE Ab binding to profilins to a similar degree as those induced by immunization with the wild type. Phl p 12-rs specific IgG inhibited profilin-induced basophil degranulation. In conclusion, a restructured recombinant vaccine was developed for the treatment of profilin-allergic patients. The strategy of tail-to-head reassembly of hypoallergenic allergen fragments within one molecule represents a generally applicable strategy for the generation of allergy vaccines.  相似文献   

13.
On the basis of IgE epitope mapping data, we have produced three allergen fragments comprising aa 1-33, 1-57, and 31-110 of the major timothy grass pollen allergen Phl p 6 aa 1-110 by expression in Escherichia coli and chemical synthesis. Circular dichroism analysis showed that the purified fragments lack the typical alpha-helical fold of the complete allergen. Superposition of the sequences of the fragments onto the three-dimensional allergen structure indicated that the removal of only one of the four helices had led to the destabilization of the alpha helical structure of Phl p 6. The lack of structural fold was accompanied by a strong reduction of IgE reactivity and allergenic activity of the three fragments as determined by basophil histamine release in allergic patients. Each of the three Phl p 6 fragments adsorbed to CFA induced Phl p 6-specific IgG Abs in rabbits. However, immunization of mice with fragments adsorbed to an adjuvant allowed for human use (AluGel-S) showed that only the Phl p 6 aa 31-110 induced Phl p 6-specific IgG Abs. Anti-Phl p 6 IgG Abs induced by vaccination with Phl p 6 aa 31-110 inhibited patients' IgE reactivity to the wild-type allergen as well as Phl p 6-induced basophil degranulation. Our results are of importance for the design of hypoallergenic allergy vaccines. They show that it has to be demonstrated that the hypoallergenic derivative induces a robust IgG response in a formulation that can be used in allergic patients.  相似文献   

14.
Expression of Th2 immunity against environmental Ags is the hallmark of the allergic phenotype and contrasts with the Th1-like pattern, which is stably expressed in healthy adults throughout life. Epidemiological studies indicate that the prenatal environment plays an important and decisive role in the development of allergy later in life. Since the underlying mechanisms were unclear, an animal model was developed to study the impact of maternal allergy on the development of an allergic immune response in early life. An allergic Th2 response was induced in pregnant mice by sensitization and aerosol allergen exposure. Both, IgG1 and IgG2a, but not IgE, Abs cross the placental barrier. Free allergen also crosses the placental area and was detected in serum and amniotic fluids of neonatal F(1) mice. These F(1) mice demonstrated a suppressed Th1 response, as reflected by lowered frequencies and reduced levels of IFN-gamma production. Development of an IgE response against the same allergen was completely prevented early in life. This effect was mediated by diaplacental transfer of allergen-specific IgG1 Abs. In contrast, allergic sensitization against a different allergen early in life was accelerated in these mice. This effect was mediated by maternal CD4 and OVA-specific Th2 cells induced by allergic sensitization during pregnancy. These data indicate a critical role for maternal T and B cell response in shaping pre- and postnatal maturation of specific immunity to allergens.  相似文献   

15.
Almost 500 million people worldwide suffer from Type I allergy, a genetically determined immunodisorder which is based on the production of IgE antibodies against per se harmless antigens (allergens). Due to their worldwide distribution and heavy pollen production, grasses represent a major allergen source for approximately 40% of allergic patients. We purified Phl p 4, a major timothy grass (Phleum pratense) pollen allergen with a molecular mass of 61.3 kDa and a pl of 9.6 to homogeneity. Circular dichroism spectroscopical analysis indicates that Phl p 4 contains a mixed alpha-helical/beta-pleated secondary structure and, unlike many other allergens, showed no reversible unfolding after thermal denaturation. We show that Phl p 4 is a major allergen which reacts with IgE antibodies of 75% of grass pollen allergic patients (n=150) and induces basophil histamine release as well as immediate type skin reactions in sensitized individuals. Phl p 4-specific IgE from three patients as well as two rabbit-anti Phl p 4 antisera cross-reacted with allergens present in pollen of trees, grasses, weeds as well as plant-derived food. Rabbit antibodies raised against Phl p 4 also inhibited the binding of allergic patients IgE to Phl p 4. Phl p 4 may thus be used for diagnosis and treatment of sensitized allergic patients.  相似文献   

16.
Airway mucosal dendritic cells (AMDC) and other airway APCs continuously sample inhaled Ags and regulate the nature of any resulting T cell-mediated immune response. Although immunity develops to harmful pathogens, tolerance arises to nonpathogenic Ags in healthy individuals. This homeostasis is thought to be disrupted in allergic respiratory disorders such as allergic asthma, such that a potentially damaging Th2-biased, CD4(+) T cell-mediated inflammatory response develops against intrinsically nonpathogenic allergens. Using a mouse model of experimental allergic airways disease (EAAD), we have investigated the functional changes occurring in AMDC and other airway APC populations during disease onset. Onset of EAAD was characterized by early and transient activation of airway CD4(+) T cells coinciding with up-regulation of CD40 expression exclusively on CD11b(-) AMDC. Concurrent enhanced allergen uptake and processing occurred within all airway APC populations, including B cells, macrophages, and both CD11b(+) and CD11b(-) AMDC subsets. Immune serum transfer into naive animals recapitulated the enhanced allergen uptake observed in airway APC populations and mediated activation of naive allergen-specific, airway CD4(+) T cells following inhaled allergen challenge. These data suggest that the onset of EAAD is initiated by enhanced allergen capture and processing by a number of airway APC populations and that allergen-specific Igs play a role in the conversion of normally quiescent AMDC subsets into those capable of inducing airway CD4(+) T cell activation.  相似文献   

17.

Background

Grass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet.

Objective

To analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules.

Methods

We analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities.

Results

Within the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found.

Conclusions

Component-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population.  相似文献   

18.
Approximately 400 million allergic patients are sensitized against group 1 grass pollen allergens, a family of highly cross-reactive allergens present in all grass species. We report the eukaryotic expression of the group 1 allergen from Timothy grass, Phl p 1, in baculovirus-infected insect cells. Domain elucidation by limited proteolysis and mass spectrometry of the purified recombinant glycoprotein indicates that the C-terminal 40% of Phl p 1, a major IgE-reactive segment, represents a stable domain. This domain also exhibits a significant sequence identity of 43% with the family of immunoglobulin domain-like group 2/3 grass pollen allergens. Circular dichroism analysis demonstrates that insect cell-expressed rPhl p 1 is a folded species with significant secondary structure. This material is well behaved and is adequate for the growth of crystals that diffract to 2.9 A resolution. The importance of conformational epitopes for IgE recognition of Phl p 1 is demonstrated by the superior IgE recognition of insect-cell expressed Phl p 1 compared to Escherichia coli-expressed Phl p 1. Moreover, insect cell-expressed Phl p 1 induces potent histamine release and leads to strong up-regulation of CD203c in basophils from grass pollen allergic patients. Deglycosylated Phl p 1 frequently exhibits higher IgE binding capacity than the recombinant glycoprotein suggesting that rather the intact protein structure than carbohydrate moieties themselves are important for IgE recognition of Phl p 1. This study emphasizes the important contribution of conformational epitopes for the IgE recognition of respiratory allergens and provides a paradigmatic tool for the structural analysis of the IgE allergen interaction.  相似文献   

19.
The recognition of conformational epitopes on respiratory allergens by IgE Abs is a key event in allergic inflammation. We report a molecular strategy for the conversion of allergens into vaccines with reduced allergenic activity, which is based on the reassembly of non-IgE-reactive fragments in the form of mosaic proteins. This evolution process is exemplified for timothy grass pollen-derived Phl p 2, a major allergen for more than 200 million allergic patients. In a first step, the allergen was disrupted into peptide fragments lacking IgE reactivity. cDNAs coding for these peptides were reassembled in altered order and expressed as a recombinant mosaic molecule. The mosaic molecule had lost the three-dimensional structure, the IgE reactivity, and allergenic activity of the wild-type allergen, but it induced high levels of allergen-specific IgG Abs upon immunization. These IgG Abs crossreacted with group 2 allergens from other grass species and inhibited allergic patients' IgE binding to the wild-type allergen. The mosaic strategy is a general strategy for the reduction of allergenic activity of protein allergens and can be used to convert harmful allergens into safe vaccines.  相似文献   

20.
Allergen immunotherapy (IT) has long-term efficacy in IgE-mediated allergic rhinitis and asthma. IT has been shown to modify lymphocyte responses to allergen, inducing IL-10 production and IgG Abs. In contrast, a putative role for IgA and local TGF-beta-producing cells remains to be determined. In 44 patients with seasonal rhinitis/asthma, serum IgA1, IgA2, and polymeric (J chain-containing) Abs to the major allergen Phl p 5 were determined by ELISA before and after a 2-year double-blind trial of grass pollen (Phleum pratense) injection IT. Nasal TGF-beta expression was assessed by in situ hybridization. Sera from five IT patients were fractionated for functional analysis of the effects of IgA and IgG Abs on IL-10 production by blood monocytes and allergen-IgE binding to B cells. Serum Phl p 5-specific IgA2 Abs increased after a 2-year treatment (approximately 8-fold increase, p = 0.002) in contrast to IgA1. Increases in polymeric Abs to Phl p 5 (approximately 2-fold increase, p = 0.02) and in nasal TGF-beta mRNA (p = 0.05) were also observed, and TGF-beta mRNA correlated with serum Phl p 5 IgA2 (r = 0.61, p = 0.009). Post-IT IgA fractions triggered IL-10 secretion by monocytes while not inhibiting allergen-IgE binding to B cells as observed with IgG fractions. This study shows for the first time that the IgA response to IT is selective for IgA2, correlates with increased local TGF-beta expression, and induces monocyte IL-10 expression, suggesting that IgA Abs could thereby contribute to the tolerance developed in IT-treated allergic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号