首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III.  相似文献   

2.
3.
Porcine pancreatic α-amylase (α-1,4 glucan 4-glucanohydrolase, EC 3.2.1.1) is shown to be a glycoprotein. Both molecular forms I and II of amylase contain 0.75 mole of fucose, 0.45 mole of galactose and 0.52 mole of mannose per mole of enzyme. Analyses of amino sugars indicate 1.2 and 0.8 residues of glucosamine bound per mole of amylase I and amylase II, respectively. A method for identification and quantitation of neutral sugars by gas chromatography of the trimethylsilyl derivatives of their corresponding alditols is proposed.  相似文献   

4.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

5.
This study examined the effects of diet on the development of prostatitis in male rats. Adult male rats were placed on either of two specially formulated diets which differed from one another by the presence or absence of soy as the protein source. A third group of rats (control) was fed standard laboratory rat chow which also includes soy as a source of protein. After 11 weeks, it was found that rats maintained on soy-free diet developed prostatitis mainly in the lateral lobe of the prostate. Increased severity and incidence of prostatitis in rats maintained on the soy-free diet coincided with a significant decrease in urinary excretion of various phytoestrogens. There was no evidence of prostatitis in rats maintained on soy-containing diets. Urinary excretion of phytoestrogens in rats maintained on soy-containing diet was also not different from controls. These results suggest that soy as a dietary source plays a protective role against the development of prostatitis in rats, and indicate that the ventral, lateral and dorsal lobes of the rat prostate have different sensitivities to alterations in dietary factors.  相似文献   

6.
The effect of estradiol (E2) on amylase content and on basal and stimulated amylase release from the pancreatic acini was examined in relation to its effects on cholecystokinin (CCK)-receptor (R) levels. Guinea pigs were ovariectomized (OVX) and a week later administered either E2 (10 micrograms/kg) (Treated, T) or vehicle (corn oil) (Control, C) 0.2 ml/day s.c. After 7 days of injections, animals were killed, pancreata weighed and basal and stimulated amylase release from pancreatic acini measured. Receptors for CCK were measured on pancreatic membranes. Chronic administration of E2 resulted in a significant decrease in: (1) pancreatic weight (0.96 +/- 0.04, T vs 1.142 +/- 0.046 g, C); (2) total pancreatic DNA content (5.74 +/- 0.37, T vs 6.81 +/- 0.16 mgs, C); (3) total amylase content in pancreata (2081 +/- 307, T vs 3795 +/- 442 I.U., C); (4) absolute value of basal amylase release (6.57 +/- 1.4, T vs 11.8 +/- 1.9 I.U./incubate, C); and (5) absolute value of amylase release stimulated by increasing doses (0.01-1000 nM) of CCK in T vs C animals. On the other hand, the amylase release in response to greater than 0.5 nM of CCK, expressed as a percentage of the total amylase content, was significantly increased in T vs C animals, which may be related to a significant rise in the concentration (fmol/mg protein) of CCK-receptors (629.8 +/- 65.9, T vs 313.4 +/- 92.7 fmol, C). Concentration of DNA/unit pancreatic weight and basal amylase release expressed as a percentage of total content, however, was similar in the C and T guinea pigs, while concentration of amylase and CCK-receptors/unit pancreatic weight remained significantly different in the two groups of animals. These results suggest that E2 may have more than one effect on the pancreas in vivo, including a significant reduction in pancreatic growth and amylase concentration/cell and an up-regulation of CCK-receptors/cell.  相似文献   

7.
The level of amylase activity in larvae and adults of Drosophila melanogaster is dependent on the dietary carbohydrate source; flies or larvae from a food medium containing starch show higher levels of activity than individuals from a food containing simple sugars. This is shown to be due to repression of activity by sugars rather than enhancement of activity by starch. Moreover, the changes in enzyme activity reflect a change in enzyme quantity rather than a change in catalytic efficiency. The seeming stimulation of amylase activity by sucrose in some experiments is due, simply, to comparisons with "starvation" diets which cause a large nonspecific reduction in enzyme activity. Though all strains tested showed repression of enzyme activity by simple sugars, the degree of repression varies between strains. Also, in those strains which carry a duplication of the amylase structural gene, the two isozymal forms of amylase can be differentially repressed by dietary sugars.  相似文献   

8.
Carcinogenesis is a complex process during which cells undergo genetic and epigenetic alterations. MicroRNAs control gene expression by negatively regulating protein-coding mRNAs. Several reports demonstrated that miR-106a is up-regulated in gastric and colorectal cancers and promotes tumor progression. In contrast, in glioma miR-106a plays the role of a tumor suppressor gene rather than an oncogene. Here we demonstrate that a high level of miR-106a expression is present in pancreatic cancer. Furthermore, our investigation shows that miR-106a has an oncogenic role in pancreatic tumorigenesis by promoting cancer cell proliferation, epithelial–mesenchymal transition and invasion by targeting tissue inhibitors of metalloproteinase 2 (TIMP-2). MiR-106a could be a critical therapeutic target in pancreatic cancer.  相似文献   

9.
We recently reported in AR42J pancreatic acinar cells that glucocorticoids increased the synthesis, cell content, and mRNA levels for amylase (Logsdon, C.D., Moessner, A., Williams, J.A., and Goldfine, I.D. (1985) J. Cell Biol. 100, 1200-1208). In addition, in these cells glucocorticoids increased the volume density of secretory granules and rough endoplasmic reticulum. In the present study we investigate the effects of glucocorticoids on the receptor binding and biological effects of cholecystokinin (CCK) on AR42J cells. Treatment with 10 nM dexamethasone for 48 h increased the specific binding of 125I-CCK. This increase in binding was time-dependent, with maximal effects occurring after 48 h, and dose-dependent, with a one-half maximal effect elicited by 1 nM dexamethasone. Other steroid analogs were also effective and their potencies paralleled their relative effectiveness as glucocorticoids. Analyses of competitive binding experiments conducted at 4 degrees C to minimize hormone internalization and degradation revealed the presence of a single class of CCK binding sites with a Kd of approximately 6 nM and indicated that dexamethasone treatment nearly tripled the number of CCK receptors/cell with little change in receptor affinity. Treatment with 10 nM dexamethasone increased both basal amylase secretion and the amylase released in response to CCK stimulation. In addition, dexamethasone increased the sensitivity of the cells to CCK. The glucocorticoid decreased the concentration of CCK required for one half-maximal stimulation of amylase secretion from 35 +/- 6 to 8 +/- 1 pM. These data indicate, therefore, that glucocorticoids induce an increase in the number of CCK receptors in AR42J cells, and this increase leads to enhanced sensitivity to CCK.  相似文献   

10.
We previously demonstrated that feeding a diet containing a high level of amino acid mixture simulating casein (AA) induced an increase in pancreatic protease activities in rats. In the present study, this effect of dietary AA was further characterized with three separate experiments. These experiments (1) examined periodic changes in pancreatic and small intestinal trypsin activities after switching from a 20% (a normal nitrogen level) AA diet to a 60% AA (a high nitrogen level) diet; (2) measured the abundance of mRNA for four trypsinogen isozymes and for intestinal cholecystokinin (CCK) and secretin in rats fed 20% and 60% AA diets for 10 days compared with rats fed 20% and 60% casein diets; and (3) measured the abundance of mRNA for four trypsinogen isozymes after chronic administration of CCK. Trypsin activities were gradually increased in both the pancreas and the small intestinal lumen and reached maximum at 5 days after the switch to the 60% AA diet (Exp. 1). This result is evidence that the increase in the protease activity in the pancreas is due to enhancement of pancreatic trypsin production. In experiment 2, pancreatic trypsinogen isozymes I, II, III, and IV mRNA abundance were evaluated by the Northern blotting method using cDNA probes specific for each isozyme mRNA. Abundance of trypsinogen mRNA without trypsinogen I tended to increase in the rats fed the 60% casein diet but tended to decrease in the rats fed the 60% AA diet compared with the respective normal nitrogen level diet groups without significant difference. CCK mRNA abundance in the jejunal mucosa increased as a result of feeding the 60% casein diet, but not the 60% AA diet. Subcutaneous CCK injections (3.5 nmole/kg body weight/day, twice daily, at 8:30 am and 7:30 pm) for 10 days resulted in increased pancreatic trypsin activity, whereas the changes in mRNA of the four trypsinogen isozymes was similar between the 20% and 60% casein groups but differed between the 20% and 60% AA groups (Exp. 3). These results suggest that CCK is not involved in the induction of pancreatic trypsin that occurs with feeding of a high AA diet and that the mechanism of protease induction by dietary AA is different from that in the case of dietary protein.  相似文献   

11.
The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens.  相似文献   

12.
Using interposon mutagenesis, we have generated strains of Pseudomonas aeruginosa which lack or overexpress the substrate-selective OprB porin of this species. A marked decrease or increase in the initial uptake of glucose by these strains verified the role of OprB in facilitating the diffusion of glucose across the outer membrane of P. aeruginosa. However, we also demonstrated that the loss or overexpression of OprB had a similar effect on the uptake of three other sugars able to support the growth of this bacterium (mannitol, glycerol, and fructose). This effect was restricted to carbohydrate transport; arginine uptake was identical in mutant and wild-type strains. These results indicated that OprB cannot be considered strictly a glucose-selective porin; rather, it acts as a central component of carbohydrate transport and is more accurately described as a carbohydrate-selective porin.  相似文献   

13.
14.
The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.  相似文献   

15.
16.
It is generally believed that the activation of various cell surface receptors results in the phospholipase C-catalyzed production of inositol trisphosphate which, in turn, increases the intracellular concentration of free Ca2+ by stimulating its release from nonmitochondrial sources. We have investigated both the production of inositol trisphosphate and changes in intracellular Ca2+ concentration in rat pancreatic acini in response to caerulein and CCK-JMV-180, two analogs of cholecystokinin. Both of these analogs cause comparable increases in the rate of amylase secretion and in intracellular Ca2+ concentration but their effects on inositol phosphate generation are dramatically different; caerulein stimulates significant production of inositol phosphates within 1 min of its addition, whereas no detectable levels of inositol phosphates were generated within the same time after addition of CCK-JMV-180. These results suggest that the CCK-JMV-180 stimulated release of intracellular Ca2+ is not mediated by inositol trisphosphate but some other as yet unidentified messenger.  相似文献   

17.
12-O-tetradecanoylphorbol 13-acetate (TPA) and cholecystokinin octapeptide stimulate amylase secretion in dispersed pancreatic acini, presumably acting via the activation of protein kinase C. In this study, we examined TPA pretreatment on the subsequent response of rat pancreatic acini to secretagogues. Acini exposed to TPA (3 X 10(-7) M) at 37 degrees C reduced the subsequent amylase secretion as stimulated by cholecystokinin octapeptide and carbachol, but not by A23187 or VIP. The optimal effect was obtained after 5 min of preincubation with TPA. Longer incubation did not result in greater attenuation. The degree of attenuation was dependent on the concentration of TPA used in the pretreatment. Maximal effect was seen at TPA concentrations of 10(-7) M and higher. Preincubation with TPA resulted in alterations of the dose response of pancreatic acini to cholecystokinin octapeptide. A decrease in amylase secretion was obtained at optimal and suboptimal but not at supraoptimal concentrations of cholecystokinin octapeptide. The peak response to cholecystokinin octapeptide, furthermore, was shifted almost 1 log unit to the right, suggesting a decrease in cholecystokinin binding of the acini following TPA treatment. Binding studies demonstrated a reduction in the specific binding of 125I-labelled cholecystokinin octapeptide to acini following TPA treatment. Analysis of binding data revealed a decrease in affinity and binding capacity of the high-affinity component. No significant change in the binding capacity was detected with the low-affinity component, but a great increase in its affinity was observed. This suggests that the attenuation effect by TPA on the cholecystokinin octapeptide response in rat pancreatic acini in vitro is at the receptor level.  相似文献   

18.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   

19.
Cholecystokinin (CCK) receptors on rat pancreatic acini have been demonstrated to be glycoproteins. In order to study whether their carbohydrate moieties play a role in ligand binding, membrane preparations (adjusted to 0.2 mg protein me) were incubated with 20 pM 125-I-CCK octapeptide (125I-CCK8) for 4 h at 30 degrees C in the presence of lectins with different sugar specificities. Concanavalin A, soy-bean agglutinin, and peanut agglutinin in concentrations up to 1 mM did not alter specific 125I-CCK8 binding. Ulex europeus lectin I showed a dose-dependent enhancement of CCK binding up to 150% of controls at a concentration of 1 mM. Wheat-germ agglutinin (WGA) was the only lectin found to have an inhibitory effect. Inhibition was dose-dependent, with maximal reduction attained at 42 nM, but CCK binding was only partially inhibited to 66.2 +/- 4.4%. Inhibition by WGA was prevented by the presence of N-acetyl-D-glucosamine or N,N',N"-triacetylchitotriose, sugars that are specific for WGA. The inhibitory effect of WGA was not due to an increase in non-specific binding, increased CCK degradation, or CCK binding to WGA. Binding data indicated that the presence of WGA resulted in a decrease in receptor affinity (Kd = 567 +/- 191 v. 299 +/- 50 pM). No significant change in the number of available binding sites was observed. This suggests that WGA is not binding to the active binding site. It is conceivable that binding of WGA to N-acetyl-D-glucosamine or its polymers can lead to a conformational change in the receptor protein, and that this carbohydrate moiety is essential for optimal receptor-ligand interaction.  相似文献   

20.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HRIs) are widely used to reduce serum cholesterol in patients with hypercholesterolemia. Previous studies have shown that HRIs can induce apoptosis in colon cancer cells. In this study, we investigated the mechanisms underlying the apoptosis-inducing effect of HRIs in greater detail. The HRI lovastatin induced apoptosis in the human colon cancer cell line SW480 by blocking the cholesterol synthesis pathway. Immunoblot analysis of antiapoptotic molecules, including survivin, XIAP, cIAP-1, cIAP-2, Bcl-2, and Bcl-X(L), revealed that only survivin expression was decreased by lovastatin. Survivin down-regulation by RNA interference induced apoptosis, and survivin overexpression rendered the cells resistant to lovastatin-induced growth inhibition. These results indicate that survivin down-regulation contributes substantially to the proapoptotic properties of lovastatin. Farnesyl pyrophosphate and geranylgeranyl pyrophosphate, two downstream intermediates in the cholesterol synthesis pathway, simultaneously reversed survivin down-regulation and the blocking of Ras isoprenylation by lovastatin. Ras isoprenylation is important for the activation of Ras-mediated signaling, including the activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The PI3-kinase inhibitor down-regulated survivin in SW480 cells. In addition, lovastatin blocked Ras activation and Akt phosphorylation. We conclude that survivin down-regulation is crucial in lovastatin-induced apoptosis in cancer cells and that lovastatin decreases survivin expression by inhibiting Ras-mediated PI3-kinase activation via the blocking of Ras isoprenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号