共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bypassing the rRNA processing endonucleolytic cleavage at site A2 in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1 下载免费PDF全文
Rrp5p is the only ribosomal RNA processing trans-acting factor that is required for the synthesis of both 18S and 5.8S rRNAs in Saccharomyces cerevisiae. Mutational analyses have characterized modified forms of Rrp5p that either affect formation of 18S rRNA by inhibiting cleavage at sites A0/A1/A2, or synthesis of 5.8S rRNA by inhibiting cleavage at site A3. Here, we examine the rRNA maturation process associated with a RRP5 bipartite allele that codes for two noncontiguous parts of the protein. This slow-growing bipartite mutant has a unique rRNA-processing phenotype that proceeds without endonucleolytic cleavage at site A2. In wild-type cells, the A2 cleavage takes place on the 32S pre-rRNA and is responsible for the formation of 20S and 27SA2 species, the precursors of mature 18S and 5.8S/25S rRNAs, respectively. In the bipartite strain, such precursors were not detectable as judged by Northern analysis or in vivo labeling. They were replaced by the aberrant 21S species and the bypassing 27SA3 precursor, both descended from direct cleavage of 32S pre-rRNA at site A3, which provides an alternative rRNA maturation pathway in this strain. The 21S pre-rRNA is the sole detectable and most likely available precursor of 18S rRNA in this particular strain, indicating that 18S rRNA can be directly produced from 21S. Furthermore, 21S species were found associated with 43S preribosomal particles as similarly observed for the 20S pre-rRNA in the wild-type cells. 相似文献
3.
There are two main classes of small nucleolar RNAs (snoRNAs): the box C/D snoRNAs and the box H/ACA snoRNAs that function as guide RNAs to direct sequence-specific modification of rRNA precursors and other nucleolar RNA targets. A previous computational and biochemical analysis revealed a possible evolutionary relationship between miRNA precursors and some box H/ACA snoRNAs. Here, we investigate a similar evolutionary relationship between a subset of miRNA precursors and box C/D snoRNAs. Computational analyses identified 84 intronic miRNAs that are encoded within either box C/D snoRNAs, or in precursors showing similarity to box C/D snoRNAs. Predictions of the folded structures of these box C/D snoRNA-like miRNA precursors resemble the structures of known box C/D snoRNAs, with the boxes C and D often in close proximity in the folded molecule. All five box C/D snoRNA-like miRNA precursors tested (miR-27b, miR-16-1, mir-28, miR-31 and let-7g) bind to fibrillarin, a specific protein component of functional box C/D snoRNP complexes. The data suggest that a subset of small regulatory RNAs may have evolved from box C/D snoRNAs. 相似文献
4.
Yang XC Xu B Sabath I Kunduru L Burch BD Marzluff WF Dominski Z 《Molecular and cellular biology》2011,31(7):1492-1502
3'-end cleavage of histone pre-mRNAs is catalyzed by CPSF-73 and requires the interaction of two U7 snRNP-associated proteins, FLASH and Lsm11. Here, by using scanning mutagenesis we identify critical residues in human FLASH and Lsm11 that are involved in the interaction between these two proteins. We also demonstrate that mutations in the region of FLASH located between amino acids 50 and 99 do not affect binding of Lsm11. Interestingly, these mutations convert FLASH into an inhibitory protein that reduces in vitro processing efficiency of highly active nuclear extracts. Our results suggest that this region in FLASH in conjunction with Lsm11 is involved in recruiting a yet-unknown processing factor(s) to histone pre-mRNA. Following endonucleolytic cleavage of histone pre-mRNA, the downstream cleavage product (DCP) is degraded by the 5'-3' exonuclease activity of CPSF-73, which also depends on Lsm11. Strikingly, while cleavage of histone pre-mRNA is stimulated by FLASH and inhibited by both dominant negative mutants of FLASH and anti-FLASH antibodies, the 5'-3' degradation of the DCP is not affected. Thus, the recruitment of FLASH to the processing complex plays a critical role in activating the endonuclease mode of CPSF-73 but is dispensable for its 5'-3' exonuclease activity. These results suggest that CPSF-73, the catalytic component in both reactions, can be recruited to histone pre-mRNA largely in a manner independent of FLASH, possibly by a separate domain in Lsm11. 相似文献
5.
6.
7.
Genomewide analysis of box C/D and box H/ACA snoRNAs in Chlamydomonas reinhardtii reveals an extensive organization into intronic gene clusters 总被引:1,自引:0,他引:1 下载免费PDF全文
Chlamydomonas reinhardtii is a unicellular green alga, the lineage of which diverged from that of land plants >1 billion years ago. Using the powerful small nucleolar RNA (snoRNA) mining platform to screen the C. reinhardtii genome, we identified 322 snoRNA genes grouped into 118 families. The 74 box C/D families can potentially guide methylation at 96 sites of ribosomal RNAs (rRNAs) and snRNAs, and the 44 box H/ACA families can potentially guide pseudouridylation at 62 sites. Remarkably, 242 of the snoRNA genes are arranged into 76 clusters, of which 77% consist of homologous genes produced by small local tandem duplications. At least 70 snoRNA gene clusters are found within introns of protein-coding genes. Although not exhaustive, this analysis reveals that C. reinhardtii has the highest number of intronic snoRNA gene clusters among eukaryotes. The prevalence of intronic snoRNA gene clusters in C. reinhardtii is similar to that of rice but in contrast with the one-snoRNA-per-intron organization of vertebrates and fungi and with that of Arabidopsis thaliana in which only a few intronic snoRNA gene clusters were identified. This analysis of C. reinhardtii snoRNA gene organization shows the functional importance of introns in a single-celled organism and provides evolutionary insight into the origin of intron-encoded RNAs in the plant lineage. 相似文献
8.
Rozhdestvensky TS Tang TH Tchirkova IV Brosius J Bachellerie JP Hüttenhofer A 《Nucleic acids research》2003,31(3):869-877
Small nucleolar RNAs (designated as snoRNAs in Eukarya or sRNAs in Archaea) can be grouped into H/ACA or C/D box snoRNA (sRNA) subclasses. In Eukarya, H/ACA snoRNAs assemble into a ribonucleoprotein (RNP) complex comprising four proteins: Cbf5p, Gar1p, Nop10p and Nhp2p. A homolog for the Nhp2p protein has not been identified within archaeal H/ACA RNPs thus far, while potential orthologs have been identified for the other three proteins. Nhp2p is related, particularly in the middle portion of the protein sequence, to the archaeal ribosomal protein and C/D box protein L7Ae. This finding suggests that L7Ae may be able to substitute for the Nhp2p protein in archaeal H/ACA sRNAs. By band shift assays, we have analyzed in vitro the interaction between H/ACA box sRNAs and protein L7Ae from the archaeon Archaeoglobus fulgidus. We present evidence that L7Ae forms specific complexes with three different H/ACA sRNAs, designated as Afu-4, Afu-46 and Afu-190 with an apparent K(d) ranging from 28 to 100 nM. By chemical and enzymatic probing we show that distinct bases located within bulges or loops of H/ACA sRNAs interact with the L7Ae protein. These findings are corroborated by mutational analysis of the L7Ae binding site. Thereby, the RNA motif required for L7Ae binding exhibits a structure, designated as the K-turn, which is present in all C/D box sRNAs. We also identified four H/ACA RNAs from the archaeal species Pyrococcus which exhibit the K-turn motif at a similar position in their structure. These findings suggest a triple role for L7Ae protein in Archaea, e.g. in ribosomes as well as H/ACA and C/D box sRNP biogenesis and function by binding to the K-turn motif. 相似文献
9.
10.
The 5′-cap structure of most spliceosomal small nuclear RNAs (snRNAs) and certain small nucleolar RNAs (snoRNAs) undergoes hypermethylation from a 7-methylguanosine to a 2,2,7-trimethylguanosine structure. 5′-Cap hypermethylation of snRNAs is dependent upon a conserved sequence element known as the Sm site common to most snRNAs. Here we have performed a mutational analysis of U3 and U14 to determine the cis-acting sequences required for 5′-cap hypermethylation of Box C/D snoRNAs. We have found that both the conserved sequence elements Box C (termed C′ in U3) and Box D are necessary for cap hypermethylation. Furthermore, the terminal stem structure that is formed by sequences that flank Box C (C′ in U3) and Box D is also required. However, mutation of other conserved sequences has no effect on hypermethylation of the cap. Finally, the analysis of fragments of U3 and U14 RNAs indicates that the Box C/D motif, including Box C (C′ in U3), Box D and the terminal stem, is capable of directing cap hypermethylation. Thus, the Box C/D motif, which is important for snoRNA processing, stability, nuclear retention, protein binding, nucleolar localization and function, is also necessary and sufficient for cap hypermethylation of these RNAs. 相似文献
11.
Small nucleolar RNAs (snoRNAs) play a significant role in Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS), which are
genomic disorders resulting from deletions in the human chromosomal region 15q11–q13. To identify snoRNAs in the region, our
computational study employs key motif features of C/D box snoRNAs and introduces a complementary RNA–RNA hybridization test.
We identify three previously unknown methylation guide snoRNAs targeting ribosomal 18S and 28S RNAs, and two snoRNAs targeting
serotonin receptor 2C mRNA. We show that the three snoRNA candidates likely possess methylation strands complementary to,
and form stable complexes with, human ribosomal RNAs. Our screen also identifies 8 other snoRNA candidates that do not pass
the rRNA-complementarity and/or hybridization tests. Two of these candidates have extensive sequence similarity to HBII-52,
a snoRNA that regulates the alternative splicing of serotonin receptor 2C mRNA. Six out of our eleven candidate snoRNAs are
also predicted by other existing methods. 相似文献
12.
3'-end processing and kinetics of 5'-end joining during retroviral integration in vivo. 总被引:2,自引:0,他引:2 下载免费PDF全文
Retroviral replication depends on integration of viral DNA into a host cell chromosome. Integration proceeds in three steps: 3'-end processing, the endonucleolytic removal of the two terminal nucleotides from each 3' end of the viral DNA; strand transfer, the joining of the 3' ends of viral DNA to host DNA; and 5'-end joining (or gap repair), the joining of the 5' ends of viral DNA to host DNA. The 5'-end joining step has never been investigated, either for retroviral integration or for any other transposition process. We have developed an assay for 5'-end joining in vivo and have examined the kinetics of 5'-end joining for Moloney murine leukemia virus (MLV). The interval between 3'-end and 5'-end joining is estimated to be less than 1 h. This assay will be a useful tool for examining whether viral or host components mediate 5'-end joining. MLV integrates its DNA only after its host cell has completed mitosis. We show that the extent of 3'-end processing is the same in unsynchronized and aphidicolin-arrested cells. 3'-end processing therefore does not depend on mitosis. 相似文献
13.
14.
Sharma S Sommers JA Driscoll HC Uzdilla L Wilson TM Brosh RM 《The Journal of biological chemistry》2003,278(26):23487-23496
Exonuclease 1 (EXO-1), a member of the RAD2 family of nucleases, has recently been proposed to function in the genetic pathways of DNA recombination, repair, and replication which are important for genome integrity. Although the role of EXO-1 is not well understood, its 5' to 3'-exonuclease and flap endonuclease activities may cleave intermediates that arise during DNA metabolism. In this study, we provide evidence that the Werner syndrome protein (WRN) physically interacts with human EXO-1 and dramatically stimulates both the exonucleolytic and endonucleolytic incision functions of EXO-1. The functional interaction between WRN and EXO-1 is mediated by a protein domain of WRN which interacts with flap endonuclease 1 (FEN-1). Thus, the genomic instability observed in WRN-/- cells may be at least partially attributed to the lack of interactions between the WRN protein and human nucleases including EXO-1. 相似文献
15.
16.
Two distinct recognition signals define the site of endonucleolytic cleavage at the 5''-end of yeast 18S rRNA. 总被引:5,自引:1,他引:5 下载免费PDF全文
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage. 相似文献
17.
Shen M Eyras E Wu J Khanna A Josiah S Rederstorff M Zhang MQ Stamm S 《Nucleic acids research》2011,39(22):9720-9730
We describe a new method that allows cloning of double-stranded RNAs (dsRNAs) that are generated in RNase protection experiments. We demonstrate that the mouse C/D box snoRNA MBII-85 (SNORD116) is processed into at least five shorter RNAs using processing sites near known functional elements of C/D box snoRNAs. Surprisingly, the majority of cloned RNAs from RNase protection experiments were derived from endogenous cellular RNA, indicating widespread antisense expression. The cloned dsRNAs could be mapped to genome areas that show RNA expression on both DNA strands and partially overlapped with experimentally determined argonaute-binding sites. The data suggest a conserved processing pattern for some C/D box snoRNAs and abundant expression of longer, non-coding RNAs in the cell that can potentially form dsRNAs. 相似文献
18.
Zhelkovsky A Tacahashi Y Nasser T He X Sterzer U Jensen TH Domdey H Moore C 《RNA (New York, N.Y.)》2006,12(3):435-445
The cleavage/polyadenylation factor (CPF) of Saccharomyces cerevisiae is thought to provide the catalytic activities of the mRNA 3'-end processing machinery, which include endonucleolytic cleavage at the poly(A) site, followed by synthesis of an adenosine polymer onto the new 3'-end by the CPF subunit Pap1. Because of similarity to other nucleases in the metallo-beta-lactamase family, the Brr5/Ysh1 subunit has been proposed to be the endonuclease. The C-terminal domain of Brr5 lies outside of beta-lactamase homology, and its function has not been elucidated. We show here that this region of Brr5 is necessary for cell viability and mRNA 3'-end processing. It is highly homologous to another CPF subunit, Syc1. Syc1 is not essential, but its removal improves the growth of other processing mutants at restrictive temperatures and restores in vitro processing activity to cleavage/ polyadenylation-defective brr5-1 extract. Our findings suggest that Syc1, by mimicking the essential Brr5 C-terminus, serves as a negative regulator of mRNA 3'-end formation. 相似文献
19.
Association of human DEAD box protein DDX1 with a cleavage stimulation factor involved in 3'-end processing of pre-MRNA 下载免费PDF全文
Bléoo S Sun X Hendzel MJ Rowe JM Packer M Godbout R 《Molecular biology of the cell》2001,12(10):3046-3059
DEAD box proteins are putative RNA helicases that function in all aspects of RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. Because many processes involving RNA metabolism are spatially organized within the cell, we examined the subcellular distribution of a human DEAD box protein, DDX1, to identify possible biological functions. Immunofluorescence labeling of DDX1 demonstrated that in addition to widespread punctate nucleoplasmic labeling, DDX1 is found in discrete nuclear foci approximately 0.5 microm in diameter. Costaining with anti-Sm and anti-promyelocytic leukemia (PML) antibodies indicates that DDX1 foci are frequently located next to Cajal (coiled) bodies and less frequently, to PML bodies. Most importantly, costaining with anti-CstF-64 antibody indicates that DDX1 foci colocalize with cleavage bodies. By microscopic fluorescence resonance energy transfer, we show that labeled DDX1 resides within a F?rster distance of 10 nm of labeled CstF-64 protein in both the nucleoplasm and within cleavage bodies. Coimmunoprecipitation analysis indicates that a proportion of CstF-64 protein resides in the same complex as DDX1. These studies are the first to identify a DEAD box protein associating with factors involved in 3'-end cleavage and polyadenylation of pre-mRNAs. 相似文献
20.
The evolutionarily conserved heterotrimeric Mre11/Rad50/Xrs2 (Nbs1) (MRX/N) complex plays a central role in an array of cellular responses involving DNA damage, telomere length homeostasis, cell-cycle checkpoint control and meiotic recombination. The underlying biochemical functions of MRX/N complex, or each of its individual subunits, at telomeres and the importance of complex formation are poorly understood. Here, we show that the Saccharomyces cerevisiae MRX complex, or its subunits, display an overwhelming preference for G-quadruplex DNA than for telomeric single-stranded or double-stranded DNA implicating the possible existence of this DNA structure in vivo. Although these alternative DNA substrates failed to affect Rad50 ATPase activity, kinetic analyses revealed that interaction of Rad50 with Xrs2 and/or Mre11 led to a twofold increase in the rates of ATP hydrolysis. Significantly, we show that Mre11 displays sequence-specific double-stranded DNA endonuclease activity, and Rad50, but not Xrs2, abrogated endonucleolytic but not the exonucleolytic activity. This repression was alleviated upon ATP hydrolysis by Rad50, suggesting that complex formation between Rad50 and Mre11 might be important for blocking the inappropriate cleavage of genomic DNA. Mre11 alone, or in the presence of ATP, MRX, MR or MX sub-complexes cleaved at the 5' end of an array of G residues in single-stranded DNA, at G quartets in G4 DNA, and at the center of TGTG repeats in duplex DNA. We propose that negative regulation of Mre11 endonuclease activity by Rad50 might be important for native as well as de novo telomere length homeostasis. 相似文献