首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of a protein inhibitor of polygalacturonase (PIPG) was studied in potato tubers during storage and in potato leaves and stems during vegetation. The activity of PIPG in tubers varied between seasons. The activity of PIPG during dormancy changed depending on the storage stage and temperature. As a rule, it was higher in etiolated sprouts than in the tubers. The activity of PIPG was slightly higher in leaves of adult vegetating plants than in stems and decreased by the end of vegetation. These changes in the activity of PIPG are suggested to be associated with changes in the growth rate.  相似文献   

2.
The activity of a protein inhibitor of polygalacturonase (PIPG) was studied in potato tubers during storage and in potato leaves and stems during vegetation. The activity of PIPG in tubers varied from between seasons. The activity of PIPG during dormancy changed depending on the storage stage and temperature. As a rule, it was higher in etiolated sprouts than in the tubers. The activity of PIPG was slightly higher in leaves of adult vegetating plants than in stems and decreased by the end of vegetation. These changes in the activity of PIPG are suggested to be associated with changes in the growth rate.  相似文献   

3.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

4.
Stable performance of insect‐resistant transgenic plants across field seasons and between plant organs damaged by the insect pest is critical for management of this resistance in the field. To evaluate this, potato (Solanum tuberosum) lines transgenic for a cry1Ac9 gene with resistance to potato tuber moth (Phthorimaea operculella) were established in the field during the southern hemisphere summers of 1997/98, 1998/99 and 1999/00 as small field plots, each of 10 plants. Replicate plots of the non‐transgenic parent cultivars (at least one for every three independently derived transgenic lines) were planted randomly throughout the trials. Field‐grown foliage was challenged with larvae in the laboratory and a growth index (GI) was calculated for recovered larvae from each transgenic and non‐transgenic potato line. Larval growth on young and mature leaves, and on newly harvested or stored tubers was also measured in the laboratory. Foliage from the transgenic lines inhibited larval growth in all seasons tested. For both control and transgenic lines, larvae had slightly lower GIs when reared on mature leaves compared with young leaves, although the correlation between mean GI for young and mature transgenic leaves was high (r = 0.97). The correlation between the mean GIs of larvae on newly harvested tubers and on those stored for 5 months was also high (r = 1.0). However, the GIs of larvae on newly harvested transgenic tubers were larger than on transgenic tubers stored for 5 months. The relative growth indices (RGI = mean GI/number days before final weighing) of larvae reared on newly harvested tubers from transgenic lines were generally higher than those from young transgenic foliage, while the RGIs of larvae reared on non‐transgenic tubers were slightly lower than those fed non‐transgenic foliage. The correlation between mean RGIs of larvae fed tubers or foliage was 0.62. The transgenic potato lines exhibited stable resistance to larvae across field seasons, between affected plant organs, and between plant organs of different ages.  相似文献   

5.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

6.
The effects of the polygalacturonase-inhibiting protein (PGIP) on the rate of oligouronide formation were studied in a model system containing polygalacturonic acid and polygalacturonase (PG) from the culture medium of phytopathogenic fungi. PGIP preparations were prepared from stored potato tubers and sprouts and also from apple fruits. The PGIP effects on oligouronide synthesis depended markedly on the physiological state of the source plant. Apple cultivars differing in their earliness differed in PGIP effects as well. The PGIP from potato tubers, which were in deep dormancy, suppressed oligouronide formation. The inhibitory PGIP action was decreased after dormancy release and tuber sprouting, which resulted in the oligouronide accumulation. The effects of PGIP from apple fruits on the oligouronide synthesis in the system containing PG from various phytopathogenic fungi were not correlated with tissue damage induced by these fungi. The PGIP effects on oligouronide formation are evident; however, their role in plant-cell processes related to the pectin compound conversions and plant resistance to diseases remains to be elucidated.  相似文献   

7.
Abstract  The Zebra chip (ZC) syndrome is an emerging disease of potato and a major threat to the potato industry. The potato psyllid, Bactericerca cockerelli (Sulc) is believed to be a vector of the ZC pathogen, which is now thought to be Candidatus Liberibacter, a bacterium. To further understand the relationship between potato psyllid infestation and ZC disease expression, healthy potato plants at different growth stages (4, 6 and 10 weeks after germination) were exposed separately to potato psyllids that were separately reared on four solanaceous hosts plants (potato, tomato, eggplant or bell pepper) for more than 1 year. ZC symptoms, leaf rates and total nonstructural carbohydrate accumulation in leaves and tubers of healthy and psyllid-infested plants were monitored and recorded. Typical ZC symptoms were observed in leaves and tubers of all plants exposed to potato psyllids regardless of the host plant on which they were reared. This was also accompanied by significant reductions in net photosynthetic rate. Caged potato plants without exposure to potato psyllids (uninfested controls) did not show any ZC symptom in both foliage and in harvested tubers. Foliage damage and ZC expression were most severe in the potato plants that were exposed to potato psyllids 4 weeks after germination compared to plants infested at later growth stages. Tubers from potato psyllid-infested plants had significantly higher levels of reducing sugars (glucose) and lower levels of starch than those in healthy plants, indicating that potato psyllid infestation interfered with carbohydrate metabolism in either leaves or tubers, resulting in ZC expression.  相似文献   

8.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

9.
Overcompensation is a plant tolerance response in which plants have higher fitness after herbivory than without damage. Although it has been demonstrated that plants are able to simultaneously express resistance and tolerance traits, it remains unclear whether overcompensating plants are also inducing resistance‐mediating secondary metabolite production and how herbivores perform on plants that overcompensate. Our previous work has shown that a potato variety [Solanum tuberosum L. cv. Pastusa Suprema (Solanaceae)] from Colombia can express overcompensatory responses to damage by larvae of the Guatemalan potato moth, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Here we investigated (1) whether potatoes that express overcompensatory responses also induce resistance traits and (2) how the previous damage affects Guatemalan potato moth preference and performance. Our results show that larval feeding not only systemically induces higher tuber biomass but also an increased production of resistance‐related compounds, such as phenolics and proteinase inhibitors. Pupal mass increased with increasing tuber size, whereas changes in tuber secondary metabolism did not correlate with any metric of larval performance. Oviposition preference did not change between induced and undamaged plants. Our data show that potato plants expressing overcompensatory responses also induce secondary compounds known to increase resistance against herbivores. However, the induced response was relatively small, reducing the opportunities for a negative effect on the herbivore. Hypotheses for why larvae perform better in larger tubers and are not affected by the secondary metabolism are discussed. From an ecological and agricultural point of view, our results suggest that the expression of overcompensatory traits could have positive effects on herbivore performance.  相似文献   

10.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

11.
Chlorocholine chloride (CCC) was sprayed on a potato crop 25 days after sowing (DAS) at 5 day intervals for a total of 7 sprays. Activity of sucrose synthase (SS) in the sucrose cleavage direction was many fold higher than that of acid invertase in all the tissues. The activity of alkaline invertase was negligible. A sharp decline in the starch content of stolons of the CCC-sprayed crop was observed between 60 DAS and 70 DAS. This could divert the carbon towards tubers and thus enhancing its availability for starch synthesis. The CCC-treated crop, in general, had higher SS (cleavage) activity in stem, stolons and tubers. A higher sucrose content in the stem of the CCC-treated crop could be due to the high sucrose phosphate synthase (SPS) activity observed in this plant part. In tubers of CCC-treated crops a higher SS (cleavage) activity along with a high sucrose content in tubers during the active tuber filling stage could lead to better availability of UDP-glucose for its conversion to glucose-1-phosphate, which could enter into the amyloplast leading to higher starch content. High SPS activity in tubers of CCC-treated plants ensures that reducing sugars formed are reconverted efficiently to sucrose. The efficiency of developing tubers from CCC-sprayed plants to convert 14C sucrose fed through stolons into starch was about 2.5 times more than in the control.  相似文献   

12.
Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants with decreased activity of the plastidic ATP/ADP transporter (AATP1) contain less starch, despite having an increased glucose level [P. Geigenberger et al. (2001) Plant Physiol 125:1667-1678]. The metabolic alterations correlated with enhanced resistance to the bacterium Erwinia carotovora. Here it is shown that transgenic potato tubers, possessing less starch yet increased glucose levels due to the expression of a cytoplasm-localized yeast invertase, exhibit drastic susceptibility to E. carotovora. In addition, it is demonstrated that AATP1 anti-sense tubers show an increased capacity to ward off the pathogenic fungus Alternaria solani. In contrast to AATP1 anti-sense tubers, the corresponding leaf tissue does not show changes in carbohydrate accumulation. However, upon elicitor treatment, AATP1 anti-sense leaves possess an increased capacity to release H(2)O(2) and activate various defence-related genes, reactions that are associated with substantially delayed appearance of disease symptoms caused by Phytophthora infestans. Grafting experiments between AATP1 anti-sense plants and wild-type plants indicate the presence of a signal that is generated in AATP1 rootstocks and primes wild-type scions for potentiated activation of cellular defence responses in leaves. Together, the results suggest that (i) the enhanced pathogen tolerance of AATP1 anti-sense tubers is not due to "high sugar resistance", (ii) the increased disease resistance of AATP1 anti-sense tubers is effective against different types of pathogen and (iii) a systemic signal induced by antisensing the plastidic ATP/ADP transporter in potato tubers confers increased resistance to pathogens.  相似文献   

13.
Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and co-suppression potato transformants with decreased expression of sucrose–phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70–80% decrease in SPS activity led to a 30–50% inhibition of sucrose synthesis and a slight (10–20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water deficit (between –0.12 and –0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to water-stressed wild-type plants. These changes were almost completely suppressed in transformants with a 70–80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.  相似文献   

14.
The activity of polygalacturonase and the protein inhibiting this enzyme, which affected polygalacturonases of phytopathogenic fungi Verticillium dahliae and Gloesporium musarium, were detected in banana (Musa acumthata L.) fruit of cultivars Cavendish and Korolevskii. The polygalacturonase from banana fruit was inhibited by the preparations of the protein inhibitor not only from bananas but also from potato (Solanum tuberosum L.) tubers and pepper (Capsicum annuum L.) fruit.  相似文献   

15.
16.
Antimicrobial peptide magainin II, isolated from the skin of the African clawed toad, has shown activity in vitro against a range of micro-organisms. Transgenic potato lines expressing a synthetic magainin gene show improved resistance to the bacterial plant pathogen, Erwinia carotovora. Culturable bacterial and fungal communities associated with magainin-producing potato plants were compared with those communities from the non-transgenic parental control and with another potato cultivar. Total numbers of aerobic bacteria recovered from the leaves of the magainin-producing line, its non-transgenic parent line and an unrelated cultivar did not differ significantly. There were no detectable differences in the numbers of Gram-positive and Gram-negative bacteria, pseudomonad populations or fungi recovered from foliage from the three plant lines. Bacterial populations recovered from the roots of a magainin-expressing plant line did not differ significantly from populations recovered from the unmodified parental line. Tubers from the magainin-expressing transgenic potatoes, however, had significantly lower total numbers of bacteria than tubers produced by unmodified plants. In vitro testing of rhizosphere isolates against magainin analogues found that bacterial isolates varied in their susceptibility to the peptides. There were no significant differences in the total numbers of fungi and yeasts recovered from the various plant lines, with one exception: higher numbers of fungi were recovered from roots of magainin-expressing plants than the unmodified control plants.  相似文献   

17.
Viroid-free potato and chrysanthemum plants were obtained from meristem-tips cut from potato spindle tuber viroid-infected potato plants and from chrysanthemum plants infected with chrysanthemum stunt, chrysanthemum chlorotic mottle or cucumber palefruit viroids after 6 months therapy in a growth chamber at 5 °C and 16 hours daily light of 5.000 lx intensity. Chrysanthemum plants survived quite well the conditions of therapy while potato plants grown from stem cuttings survived these conditions much worse and potato plants grown from tubers did not survive these conditions. PSTV-free plants were obtained from meristem-tips cut from sprouts grown from potato tubers infected with severe (s-PSTV) or mild (m-PSTV) strains of potato spindle tuber viroid after 6 months therapy at 6–7 °C in the dark. The tubers survived these conditions quite well. The 3 months therapy period was found too short for any plant material. The efficiency of 6 months therapy in viroid elimination varied for different viroids and different plant material from 18.5 to 80.0 %.  相似文献   

18.
The catecholamine biosynthesis route in potato is affected by stress.   总被引:1,自引:0,他引:1  
The catecholamine compounds in potato (Solanum tuberosum L.) leaves and tubers have been identified by gas chromatography coupled to mass spectrometry (GC-MS) measurements. The finding that the catecholamine level is dramatically increased upon tyrosine decarboxylase (TD) overexpression potentiates the investigation on their physiological significance in plants. It was then evidenced that catecholamines play an important role in regulation of starch-sucrose conversion in plants. In this paper we investigated catecholamine biosynthetic pathway in potato plants exposed to the different stress conditions. The activation of TD (EC 4.1.1.25), tyrosine hydroxylase (TH, EC 1.14.18.1) and l-Dopa decarboxylase (DD, EC 4.1.1.25) was a characteristic feature of the potato leaves treated with abscisic acid (ABA). In high salt condition only TD activity was increased and in drought both TH and DD were activated. UV light activated predominantly DD activity. Leaves of plants grown in the dark and in red light circumstances were characterized by significantly decreased activities of all the three enzymes whereas those grown in cold were characterized by the decreased activity of DD only. In all, stress conditions the normetanephrine level and thus catecholamine catabolism was significantly decreased. Increased catecholamine level in TD-overexpressing potato resulted in enhanced pathogen resistance. Our data suggest that plant catecholamines are involved in plant responses towards biotic and abiotic stresses. It has to be pointed out that this is the first report proposing catecholamine as new stress agent compounds in plants.  相似文献   

19.
The proteinase inhibitor II (pin2) gene family exhibits two different modes of expression. It is, on the one hand, constitutively expressed in flowers of potato and tomato plants. and in potato tubers. On the other hand, its expression is induced in the plant foliage by mechanical wounding. To define cis-regulatory elements involved in pin2 promoter activity, deletion analysis of a potato pin2 promoter has been performed in stably and transiently transformed potato and tobacco plants. Two different elements, a quantitative enhancer and a regulatory element, are required for promoter activity. While functional promoter elements required for pin2 activity in tubers and wounded leaves could not be separated, its expression in flowers is mediated by different cis-acting sequences. Induction of pin2 expression in leaves by treatment with the plant growth regulators abscisic acid and jasmonic acid, and the general metabolite sucrose, depends on the presence of the regulatory element involved in expression in tubers and wounded leaves. Thus, pin2 expression in tubers and wounded leaves apparently results from the action of similar hormonal signals on closely linked promoter elements, while a different signal pathway leads to its constitutive expression in flowers.  相似文献   

20.
Potato is the world's largest non-cereal crop. Potato late blight is a pandemic, foliar wasting potato disease caused by Phytophthora infestans, which has become highly virulent, fungicide resistant, and widely disseminated. Similarly, fungicide resistant isolates of Phytophthora erythroseptica, which causes pink rot, have also become an economic scourge of potato tubers. Thus, an alternate, cost effective strategy for disease control has become an international imperative. Here we describe a strategy for engineering potato plants exhibiting strong protection against these exceptionally virulent pathogens without deleterious effects on plant yield or vigor. The small, naturally occurring antimicrobial cationic peptide, temporin A, was N-terminally modified (MsrA3) and expressed in potato plants. MsrA3 conveyed strong resistance to late blight and pink rot phytopathogens in addition to the bacterial pathogen Erwinia carotovora. Transgenic tubers remained disease-free during storage for more than 2 years. These results provide a timely, sustainable, effective, and environmentally friendly means of control of potato diseases while simultaneously preventing storage losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号