首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal chelate affinity chromatography using Zn2+-iminodiacetate agarose is shown to provide quantitative recoveries of Zn2+-inhibited protein Tyr(P) phosphatases. To elute adsorbed enzymes from immobilized Zn2+ three methods were compared: (1) removal of Zn2+ with chelators such as EDTA, (2) introduction of ligands to compete with enzyme for Zn2+ and (3) lowering pH to protonate sidechains in the enzyme that serve as ligands to Zn2+. Results show highest yields but poor purification for method 1, high purification but poor yields of active enzyme for method 3. It is concluded that gradients of competing Zn2+ ligands, such as imidazole, provide the best strategy for the purification of enzymes with retention of activity using metal chelate affinity chromatography.  相似文献   

2.
Current state of the ligand-exchange chromatography (metal chelate affinity chromatography) of proteins and enzymes is reviewed. This technique is based on the ability of proteins to bind metal ions immobilized on chelate gels. The influence of pH, composition of buffer, type of stationary ligand and nature of metal ions on the chromatographic behaviour of proteins is discussed.  相似文献   

3.
Affinity precipitation is fast emerging as a successful technique for the purification of proteins which can be introduced at an early stage of downstream processing. The technique applies the use of reversibly soluble-insoluble polymers which have either natural or synthetic origin. Apart from the successful use of some natural polymers, such as chitosan and alginate, the vast application of the technique depends upon the design of efficient synthetic polymers. In this laboratory, N-isopropylacrylamide (NIPAM) copolymers have been developed for metal chelate affinity precipitation of proteins. The copolymers of 1-vinylimidazole (VI) and iminodiacetic acid (IDA) with NIPAM were synthesized. The copolymers were thoroughly characterized with a view to designing an efficient soluble-insoluble polymer for metal chelate affinity precipitation of proteins.  相似文献   

4.
Listeria bacteriophage lytic enzymes are useful for in vitro applications such as rapid, gentle cell disruption, and they provide new approaches as selective antimicrobial agents for destruction of Listeria monocytogenes in contaminated foods. We describe here the amino-terminal modification of three cloned Listeria phage lysin genes (ply), resulting in fusion proteins with a 12-amino-acid leader containing six consecutive histidine residues. The recombinant enzymes retain their native specific activity and can be efficiently overproduced in Escherichia coli. By one-step metal chelate affinity chromatography, active lysins could be purified to more than 90% homogeneity.  相似文献   

5.
A mathematical model for metal affinity protein partitioning   总被引:2,自引:0,他引:2  
A mathematical model of metal affinity partitioning has been derived and used to describe protein partitioning in Cu (II)PEG/dextran systems. A working model has been extended to account for inhibition, which for metal affinity extraction is the inhibition of protein-metal binding by hydrogen ion. PEG/dextran partitioning experiments were performed on four proteins, tuna heart cytochrome c, Candida krusei cytochrome c, horse myoglobin, and sperm whale myoglobin. The partition coefficients for these proteins are increased by the addition of Cu (II)PEG-IDA, due to the affinity between the chelated copper atom and metal-coordinating histidine residues on the protein surface. The results of experiments to determine the effects of the number of binding sites on the protein, the copper concentration, and pH on partitioning are all well-described by the mathematical model. The pK(a) value of the metal binding site was determined to be 6.5, which is in the range of pK(a) values commonly observed for surface histidines. The average association constant for the binding of Cu (II)PEG-IDA to accessible histidines was found to be 4.5 x 10(3). This value is comparable to stability constants measured by conventional potentiometry techniques for analogous small complexes.  相似文献   

6.
Purification of peroxidase has been carried out since 1960 from different sources and with different methods. Ion exchange, affinity, hydrophobic, and metal affinity chromatography are known, to our knowledge. The present method, developed in this study, is three-phase partitioning, a novel technique to separate protein directly from a large volume of crude suspension. It has been observed that interfacing phase with a metal makes this technique highly selective. Turnip peroxidase purified with this method has 512 units/mg with 20.3% recovery. The natural proteins containing histidine or cystine are often purified by immobilized metal affinity chromatography. The purification of turnip peroxidase with the three-phase partitioning technique is based on immobilized metal affinity chromatography and is used for large-scale purification. The present method, described here, would prove its value in purifying an industrially important enzyme on a large scale from a crude suspension. The enzyme purified with this technique showed two bands on SDS- PAGE, which showed a molecular weight of approx. 39KD. Enzyme showed maximum purification with Cu++ metal and had a maximum activity at pH 6.0. The enzyme has an affinity towards hydrogen peroxide as its substrate in the presence of orthodianisidine as a chromogenic substrate. Enzyme activity was enhanced with calcium and magnesium, whereas sodium, potassium, and manganese inhibit the enzyme activity.  相似文献   

7.
8.
To develop the most efficient strategy for the purification of proteins, two types of adsorber membrane devices with different functionalities were designed and tested: 8-strips and single spin columns. The most suitable type of membrane adsorber and the optimal chromatographic loading/elution conditions for several target proteins from different biological matrices could be determined simultaneously in microliter scale. Ion exchange (IEX), metal chelate (MC), and Concanavalin A (Con A) modified membrane types were tested in the devices. Bovine serum albumin (BSA) and lysozyme were used as model proteins for investigations of the binding capacity and protein recovery percentage of the 8-strip anion exchange and the cation exchange membrane. The isolation of His(6)-tagged proteins, Bgl-His and GFP-His from fermentation broth and lysate, respectively, was performed using an 8-strip metal chelate affinity membrane loaded with different metal ions. Separation behavior of a ternary protein mixture (BSA, lysozyme, and Bgl-His) was studied in 8-strips IEX and metal chelate membrane chromatography. The Con A affinity devices were developed on the basis of metal chelate membrane spin columns loaded with Cu(2+) ions and investigated using glucose oxidase (GOD) as model protein. In summary, the advantages of the membrane adsorber technology, such as fast processing and easy scale-up, were utilized. The devices made it possible to load the membrane directly with preclarified fermentation broth or cell lysate and separate the protein of interest often in a single step.  相似文献   

9.
We have designed, synthesized, and characterized a metal chelating compound that is based on the structure of cholesterol and contains the high affinity metal chelating group, lysine nitrilotriacetic acid (Lys-NTA). Using the enzyme isoprenylcysteine carboxylmethyltransferase (Icmt) from yeast as a model integral membrane metalloenzyme, we find that this agent potently inhibits Icmt activity with an IC(50) value between 35 and 75 microM, which is at least 40 times more potent than the best known Icmt metal chelating inhibitor, Zincon. We propose that the rigid hydrophobic cholesterol moiety promotes partitioning into the membrane, enabling the metal-binding NTA group(s) to inactivate the enzyme by metal chelation. Because this compound is based on a naturally occurring membrane lipid and appears to chelate metals buried deeply within water insoluble environments, this agent may also be useful as a general tool for identifying previously unappreciated metal dependencies of other classes of membrane proteins.  相似文献   

10.
Metal chelate affinity precipitation of proteins, a method combining metal–protein interaction and affinity precipitation is being discussed as a selective separation process for proteins. The technique utilizes a flexible soluble–insoluble thermo-responsive polymer with a covalently linked ligand loaded with metal ions. The affinity binding of the target protein varies with different metal ions. Copolymers of N-isopropylacrylamide with 1-vinylimidazole loaded with Cu(II) ions are designed as a potential carriers for affinity purification and proved to be successful for purification of protein inhibitors from a variety of cereals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

12.
Epoxy supports covalently immobilize proteins following a two-step mechanism; that is, the protein is physically adsorbed and then the covalent reaction takes place. This mechanism has been exploited to combine the selectivity of metal chelate affinity chromatography with the covalent immobilization capacity of epoxy supports. In this way, it has been possible to accomplish, in a simple manner, the purification, immobilization, and stabilization of a poly-His-tagged protein. To fulfill this objective we developed a new kind of multifunctional epoxy support (chelate epoxy support [CES]), which was tested using a poly-His-tagged glutaryl acylase as a model protein (an alphabeta-heterodimeric enzyme of significant industrial interest). The selectivity of the immobilization in CES toward poly-His-tagged proteins was dependent to a large extent on the density and nature of the chelated metal. The highest selectivity was achieved by using low-density chelate groups (e.g., 5 micromol/g) and metals with a low affinity (e.g., Co). However, the rate of covalent immobilization of the protein by its reaction with the epoxy groups on the support significantly increased at alkaline pH values. The multipoint attachment to the CES also depended on the reaction time. The immobilization of both glutaryl acylase subunits was achieved by incubation of the enzyme derivative at pH 10 for 24 h, with the best enzyme derivative 100-fold more stable than the soluble enzyme. By taking advantage of the selectivity properties of the novel support, we were able to immobilize up to 30 mg of protein per gram of modified Eupergit 250 using either pure enzyme or a very crude enzyme extract.  相似文献   

13.
Biotechnological applications of phage and cell display   总被引:20,自引:0,他引:20  
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.  相似文献   

14.
Current chemical concepts were applied to Weigert's, M. Heidenhain's and Verhoeff's iron hemateins, Mayer's acid hemalum stain and the corresponding brazilein compounds. Fe bonds tightly to oxygen in preference to nitrogen and is unlikely to react with lysyl and arginyl groups of proteins. Binding of unoxidized hematoxylin by various substrates has long been known to professional dyers and was ascribed to hydrogen bonding. Chemical data on the uptake of phenols support this theory. Molecular models indicate a nonplanar configuration of hematoxylin and brazilin. The traditional quinonoid formula of hematein and brazilein was revised. During chelate formation each of the two oxy- groups of the dye shares an electron pair with the metal and contributes a negative charge to the chelate. Consequently, the blue or black 2:1 (dye:metal) complexes are anionic. Olation of such chelates affects the staining properties of iron hematein solutions. The color changes upon oxidation of hematoxylin, reaction of hematein with metals, and during exposure of chelates to acids can be explained by molecular orbital theory. Without differentiation or acid in dye chelate solutions, staining patterns are a function of the metal. Reactions of acidified solutions are determined by the affinities of the dye ligands. Brazilein is much more acid-sensitive than hematein. This difference can be ascribed to the lack of a second free phenolic -OH group in brazilein, i.e. one hydrogen bond is insufficient to anchor the dye to tissues. Since hematein and brazilein are identical in all other respects, their differences in affinity cannot be explained by van der Waals, electrostatic, hydrophobic or other forces.  相似文献   

15.
Summary Current chemical concepts were applied to Weigert's, M. Heidenhain's and Verhoeff's iron hemateins, Mayer's acid hemalum stain and the corresponding brazilein compounds. Fe+++ bonds tightly to oxygen in preference to nitrogen and is unlikely to react with lysyl and arginyl groups of proteins. Binding of unoxidized hematoxylin by various substrates has long been known to professional dyers and was ascribed to hydrogen bonding. Chemical data on the uptake of phenols support this theory. Molecular models indicate a nonplanar configuration of hematoxylin and brazilin. The traditional quinonoid formula of hematein and brazilein was revised. During chelate formation each of the two groups of the dye shares an electron pair with the metal and contributes a negative charge to the chelate. Consequently, the blue or black 2:1 (dye:metal) complexes are anionic. Olation of such chelates affects the staining properties of iron hematein solutions. The color changes upon oxidation of hematoxylin, reaction of hematein with metals, and during exposure of chelates to acids can be explained by molecular orbital theory.Without differentiation or acid in dye chelate solutions, staining patterns are a function of the metal. Reactions of acidified solutions are determined by the affinities of the dye ligands. Brazilein is much more acid-sensitive than hematein. This difference can be ascribed to the lack of a second free phenolic –OH group in brazilein, i.e. one hydrogen bond is insufficient to anchor the dye to tissues. Since hematein and brazilein are identical in all other respects, their differences in affinity cannot be explained by van der Waals, electrostatic, hydrophobic or other forces.  相似文献   

16.
The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.  相似文献   

17.
The enrichment of targeted low-abundance proteins is possible by affinity adsorption using selected sorbents. Different categories of very dilute proteins are present in most of biological extracts so that specific affinity methods are unable to address their collective enrichment. Only recently an interesting approach has been proposed associating the affinity of multiple ligands used as a library mode under overloading much beyond the saturation of the affinity mixed bed. The principle and the limits of this technology are reported along with their current and potential applications in various domains.  相似文献   

18.
A metal-binding site consisting of two histidines positioned His-X3-His in an alpha-helix has been engineered into the surface of Saccharomyces cerevisiae iso-1-cytochrome c. The synthetic metal-binding cytochrome c retains its biological activity in vivo. Its ability to bind chelated Cu(II) has been characterized by partitioning in aqueous two-phase polymer systems containing a polymer-metal complex, Cu(II)IDA-PEG, and by metal-affinity chromatography. The stability constant for the complex formed between Cu(II)IDA-PEG and the cytochrome c His-X3-His site is 5.3 x 10(4) M-1, which corresponds to a chelate effect that contributes 1.5 kcal mol-1 to the binding energy. Incorporation of the His-X3-His site yields a synthetic metal-binding protein whose metal affinity is sensitive to environmental conditions that alter helix structure or flexibility.  相似文献   

19.
A reactive water-soluble polymer was synthesized by copolymerizing N-isopropylacrylamide and glycidyl acrylate. The reactive polymer could react with the amino groups of enzymes/proteins or other ligands to form an affinity polymer. As a model, the reactive polymer was allowed to react with paraaminobenzamidine, a strong trypsin inhibitor. The affinity polymer could easily form an aqueous two-phase system with either dextran or pullulan, and the phase diagram was compared favorably to that of the well-known polyethylene glycol-dextran system. Once trypsin was attracted to the affinity polymer dominant phase, the enzyme could be dissociated from the polymer at low pH. Owing to the N-isopropylacrylamide units, the affinity polymer could be isolated from the solution by precipitation at a low level of ammonium sulfate. The enzyme recovery was always greater than 50%, and the affinity polymer could be reused in several cycles of affinity partitioning and recovery.  相似文献   

20.
The quantitative analysis of protein mixtures is pivotal for the understanding of variations in the proteome of living systems. Therefore, approaches have been recently devised that generally allow the relative quantitative analysis of peptides and proteins. Here we present proof of concept of the new metal-coded affinity tag (MeCAT) technique, which allowed the quantitative determination of peptides and proteins. A macrocyclic metal chelate complex (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)) loaded with different lanthanides (metal(III) ions) was the essential part of the tag. The combination of DOTA with an affinity anchor for purification and a reactive group for reaction with amino acids constituted a reagent that allowed quantification of peptides and proteins in an absolute fashion. For the quantitative determination, the tagged peptides and proteins were analyzed using flow injection inductively coupled plasma MS, a technique that allowed detection of metals with high precision and low detection limits. The metal chelate complexes were attached to the cysteine residues, and the course of the labeling reaction was followed using SDS-PAGE and MALDI-TOF MS, ESI MS, and inductively coupled plasma MS. To limit the width in isotopic signal spread and to increase the sensitivity for ESI analysis, we used the monoisotopic lanthanide macrocycle complexes. Peptides tagged with the reagent loaded with different metals coelute in liquid chromatography. In first applications with proteins, the calculated detection limit for bovine serum albumin for example was 110 amol, and we have used MeCAT to analyze proteins of the Sus scrofa eye lens as a model system. These data showed that MeCAT allowed quantification not only of peptides but also of proteins in an absolute fashion at low concentrations and in complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号