首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid regulation of glycerolphosphate dehydrogenase (GPDH) activity and gene expression in the developing rat brain appears complex throughout the postnatal developmental period and attains the adult pattern after the first month of life. GPDH enzyme activity is higher in the limbic system than in the cerebral cortex of intact young animals. Adrenalectomy of young rats, before the first month of life, does not affect GPDH enzyme activity in the brain areas mentioned above, while in the adult animals it results in a statistically significant decrease in activity. Furthermore, adult type glucocorticoid responsivity of GPDH enzyme activity is attained in the developing limbic system earlier — by day 40 of life — than in the cerebral cortex. During the first month of life, GPDH basal mRNA levels are increased in the absence of glucocorticoids, in both the limbic system and the cortex, in contrast to the effect of adrenalectomy in the adults, where GPDH mRNA levels are decreased in the absence of the adrenals. The observed pattern of glucocorticoid regulation of GPDH during development in the rat is discussed in relation to the possible existence of various levels of regulation of GPDH gene and enzyme activity.  相似文献   

2.
—Following head X-irradiation (750 r) of 2-day-old rats the aerobic formation of lactate in the presence or absence of chloral was markedly increased in medulla slices but remained unchanged in cerebral cortex and brain stem slices. The ratio of lactate dehydrogenase (EC 1.1.1.27) to glycerolphosphate dehydrogenase (EC 1.1.1.8) was slightly increased in cortex and brain stem but more than doubled in medulla. The relation of the increased aerobic formation of lactate in irradiated medulla to the lactate dehydrogenase:glycerolphosphate dehydrogenase ratio is discussed.  相似文献   

3.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC 1.1.1.41 and 1.1.1.42, respectively) in the brain and liver of rats of various ages were investigated. The activity of NAD-linked isocitrate dehydrogenase of the brain was greater than cytoplasmic or mitochondrial NADP-linked isocitrate dehydrogenase. In contrast, the cytoplasmic NADP-isocitrate dehydrogenase of the liver predominates over both NAD- and mitochondrial NADP-isocitrate dehydrogenases at the three ages studied. The activity of NAD-isocitrate dehydrogenase increased in the brain (139%) and liver (17%) of rats upt o 33 weeks of age and decreased (57 and 39%, respectively) in old rats (85-week-old). The activity of cytoplasmic NADP-isocitrate dehydrogenase was maximum in immature (6-week-old) rat brain and decreased as the age of the rats increased; whereas, in liver, the activity of this enzyme was found to be maximum in adult rats (33-week-old). Brain mitochondrial NADP-isocitrate dehydrogenase activity increased (64%) in adult rats, but in liver it decreased (45 and 33% in 33- and 85-week-old rats, respectively). In both tissues, adrenalectomy and hydrocortisone treatment showed differential age-dependent response. Hydrocortisone-mediated induction of the level of enzymes was inhibited by actinomycin D.  相似文献   

4.
The influence of lysophosphatidylcholine (LPC) on H(+)-ATPase, cytochrome oxidase (COX), glycerolphosphate dehydrogenase (GPDH) and malate dehydrogenase (MDH) was followed. The activities of H(+)-ATPase and COX increased with increasing LPC concentration up to 0.5 mg/mg protein when maxima were achieved. This activatory effect is LPC-specific, because Lubrol-treated or frozen-thawed mitochondria showed lower activities of these enzymes. H(+)-ATPase was not influenced by higher concentration of LPC, while COX activity decreased with increasing amount of LPC. The activity of GPDH decreased at very low concentration of LPC and was not further modified at higher LPC concentration. In an attempt to find the concentration of LPC necessary for a complete permeabilization of inner mitochondrial membrane we followed the influence of lysolipid on the release of MDH activity from the mitochondrial matrix. The full activity of this enzyme was obtained with a concentration 0.75 mg LPC/mg protein indicating that mitochondria were completely broken. Our data indicate that LPC significantly affects activity of enzymes connected with mitochondrial membrane and can be useful for evaluation of the importance of phospholipid microenvironment for the enzyme function.  相似文献   

5.
Etiroxate (Skleronorm Grünenthal R) was administered 42 days to male Wistar rats and their serum and liver cholesterol and triglyceride levels, the rate of esterification of free cholesterol in their plasma by lecithin cholesterol acyltransferase (LCAT) (EC 2.3.1.43) and thriosephosphate dehydrogenase (TPDH) (EC 1.2.1.12), lactate dehydrogenase (LDH) (EC 1.1.1.27), hexokinase (HK) (EC 2.7.1.1), c-glycerol-3-phosphate dehydrogenase (GPDH) (EC 1.1.1.8), malate dehydrogenase (MDH) (EC 1.1.1.37) citrate synthase (CS) (EC 4.1.3.7) and hydroxyacylcoenzyme A dehydrogenase (HOADH) (EC 1.1.1.35) activity were determined in their liver. After 14 and 28 days, animals given etiroxate (600 micrograms/kg) had smaller weight increments than the controls and a significantly lower plasma free and esterified cholesterol level, but a significantly higher liver cholesterol concentration. Their final plasma and liver cholesterol concentrations did not differ significantly from the control values. Plasma triglyceride levels were significantly raised in treated animals at all the given intervals. LCAT activity was significantly higher throughout the whole time of treatment, with the maximum increase in the last phase. Glycolytic and oxidative enzyme activities were significantly raised, whereas GPDH activity was the same as in the controls. The results show that etiroxate accelerates cholesterol turnover in the endogenous pool by activating LCAT and stimulating energy metabolism.  相似文献   

6.
Developing oligodendrocytes cultured in vitro express glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) and are known to respond to glucocorticoid treatment by increased activity of GPDH. We present evidence that GPDH is enriched in white matter and oligodendrocytes of adult pig brain. Bulk-isolated oligodendrocytes maintained in culture for several weeks exhibit an almost constant level of GPDH activity. Furthermore, a 4-day stimulation with hydrocortisone induces GPDH specific activity of long-term cultured oligodendrocytes from adult pig brain.  相似文献   

7.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

8.
Using mRNA differential display, we found that the gene for NAD(+)-dependent glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) is induced in rat brain following seizure activity. Northern blot and in situ hybridization analysis confirmed the differential display results; they also showed, in a separate model of neuronal activation, that after thermal noxious stimulation of the hind-paws, a similar increase in GPDH mRNA occurs in the areas of somatotopic projection in the lumbar spinal cord. Surprisingly, administration of analgesic doses of morphine or the nonsteroidal antiinflammatory drugs aspirin, metamizol (dipyrone), and indomethacin also increased GPDH mRNA levels in rat spinal cord. The opioid receptor antagonist naloxone completely blocked morphine induction of GPDH but had no effect on GPDH induction by noxious heat stimulation or metamizol treatment, implicating different mechanisms of GPDH induction. Nevertheless, in all cases, induction of the GPDH gene requires adrenal steroids and new protein synthesis, as the induction was blocked in adrenalectomized rats and by cycloheximide treatment, respectively. Our results suggest that the induction of the GPDH gene upon peripheral noxious stimulation is related to the endogenous response to pain as it is mimicked by exogenously applied analgesic drugs.  相似文献   

9.
Abstract— The effect of adrenalectomy or hypophysectomy on the metabolism of adenosine 3',5'-monophosphate (cyclic AMP) in the cerebral cortex of male Wistar rats was investigated.
The bilateral removal of adrenal glands reduced significantly the activity of cerebral adenylate cyclase [EC 4.6.1.1]. whereas that of cyclic 3'.5'-nucleotide phosphodiesterase [EC 3.1.4.17] remained unchanged. The formation of cyclic AMP measured in cerebral cortical slices from adrenalectomized or hypophysectomized rats was also diminished. Decreases in the activity of adenylate cyclase and formation of cyclic AMP following adrenalectomy were antagonized by in vivo administration of dexamethasone or aldosterone, while those observed in hypophysectomized rats were restored by ACTH or dexamethasone. It is suggested that the pituitary adrenal axis has a modulating role in the metabolism of cerebral cyclic AMP, possibly by changing adenylate cyclase activity.  相似文献   

10.
Rat glioma cells of clone C6 were hybridized in vitro with mouse L cells of clone A9 or with freshly isolated mouse macrophages, and the hybrids were assayed for glial cell functions. C6 cells expressed high levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP; EC 3.1.4.37), β-hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.30), glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), and inducibility of GPDH by hydrocortisone (HC). A9 cells and macrophages had very low activities of these functions. Hybrids between C6 and A9 or between C6 and macrophages had greatly reduced activities of these functions, but the hybrids expressed significantly higher activities than the non-glial parent. This incomplete extinction was not due to fusion of two glioma cells with one L cell or macrophage. The difference in GPDH activity in the hybrids as compared with the non-glial parent was due to incomplete shut-off of GPDH of the glial parent, and not to an increase in GPDH production by the non-glial genome.  相似文献   

11.
Rat glioma cells of clone C6 were hybridized in vitro with mouse L cells of clone A9 or with freshly isolated mouse macrophages, and the hybrids were assayed for glial cell functions. C6 cells expressed high levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP; EC 3.1.4.37), β-hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.30), glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), and inducibility of GPDH by hydrocortisone (HC). A9 cells and macrophages had very low activities of these functions. Hybrids between C6 and A9 or between C6 and macrophages had greatly reduced activities of these functions, but the hybrids expressed significantly higher activities than the non-glial parent. This incomplete extinction was not due to fusion of two glioma cells with one L cell or macrophage. The difference in GPDH activity in the hybrids as compared with the non-glial parent was due to incomplete shut-off of GPDH of the glial parent, and not to an increase in GPDH production by the non-glial genome.  相似文献   

12.
Previous studies have shown that cytosolic glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) can be induced by glucocorticoids in mammalian brain, mammary gland, and thymus, but it was thought that no induction occurred in liver. We report here that GPDH is induced by glucocorticoids in several lines of hepatoma cells and in rat hepatocytes cultured in vitro. When rat hepatoma cells of clone FU5AH were exposed to 3 μM hydrocortisone (HC) for 3 days, GPDH specific activity increased greater than sixfold over control. The rate and extent of induction were similar in exponentially growing and stationary-phase cultures of cells. Four other hepatoma cell lines were inducible to a lesser extent, and three lines were not inducible. GPDH was also induced by glucocorticoids in cultures of hepatocytes isolated from livers of 6-day-old rats. The enzyme was induced threeto fourfold by the synthetic glucocorticoid, dexamethasone, in the presence of 1 nM insulin, but the induction was not observed in the absence of insulin.  相似文献   

13.
Progesterone, 17alpha-hydroxyprogesterone, cortisone and cortisol, which are C(21)-steroids with a ketone group at the 20-position, potently inhibited the activity of enzyme acetohexamide reductase (AHR) responsible for the reductive metabolism of acetohexamide in kidney microsomes of male rats. Furthermore, progesterone was a competitive inhibitor of AHR. In the case of progesterone usage as the substrate, 20beta-hydroxysteroid dehydrogenase (20beta-HSD) activity was much higher than 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity in kidney microsomes of male rats. These results indicate that AHR present in kidney microsomes of male rats, functions as 20beta-HSD with carbonyl reductase-like activity. In male rats, both testectomy and hypophysectomy decreased the renal microsomal 20beta-HSD activity, but the decreased enzyme activities were increased by the treatment with testosterone propionate (TP). We propose the possibility that TP treatment regulates the renal microsomal 20beta-HSD activity by acting directly on the kidney of male rats. This is supported from the fact that when TP was given to ovariectomized and hypophysectomized female rats, the male-specific 20beta-HSD activity was detected in their kidney microsomes.  相似文献   

14.
The activity of liver mitochondrial flavoprotein-dependent glycerol-3-phosphate dehydrogenase (GPDH) is considered a reliable marker of thyroid status in acute and short-lasting experiments. The aim of this study was to ascertain whether GPDH activity could also be used as an index of thyroid status during chronic experiments over several months. We therefore analyzed GPDH activity in liver mitochondria of female inbred Lewis rats with thyroid status altered for 2 to 12 months. Hyperthyroid state was maintained by triiodothyronine (T (3)) or thyroxine (T (4)) administration, while methimazole was employed for inducing hypothyroidism. We found a seven- and three-fold increase of GPDH activity in female rats after T (3) or T (4) administration, respectively, compared to euthyroid females (8.9 +/- 2.3 nmol/min/mg protein), whereas administration of methimazole reduced the enzyme activity almost to one-third of the euthyroid values. These changes were not significantly influenced by the duration of hyperthyroid or hypothyroid treatment. We conclude that the level of the rat liver GPDH activity could serve as a useful marker for evaluation of hyperthyroid and hypothyroid status in chronic long-lasting experiments on female inbred Lewis rats.  相似文献   

15.
Abstract: Glycerol phosphate dehydrogenase (GPDH), glucose-6-phosphate dehydrogenase (G6PDH), and lactate dehydrogenase (LDH) activities were determined in Oligodendrocytes, neurons, and astrocytes isolated from the brains of developing rats. The activity of each enzyme was significantly lower in both neurons and astrocytes than in Oligodendrocytes. The GPDH activity in Oligodendrocytes increased more than 4-fold during development, and at 120 days cells of this type had 1.4-fold the specific activity of forebrain homogenates. The G6PDH activities in Oligodendrocytes from 10-day-old rats were 1.4-fold the activities in the forebrain homogenates. The activities of this enzyme in Oligodendrocytes were progressively lower at later ages, such that at 120 days the cells had 0.8 times the specific activities of homogenates. The Oligodendrocytes had 0.6 times the homogenate activities of LDH at 10 days, and this ratio had decreased to 0.2 by 120 days. These enzymes were also measured in myelin isolated from 20-, 60-, and 120-day-old rats. By 120 days the specific activities of G6PDH and LDH in myelin were <8% of the respective activities in homogenates. The GPDH activity in myelin was, however, at least 20% the specific activity in the homogenates, even in the oldest animals. It is proposed that LDH could be used as a marker for oligodendroglial cytoplasm in subfractions of myelin and in myelin-related membrane vesicles.  相似文献   

16.
The influence of diabetes, hypophysectomy and adrenalectomy on glucose oxidation in rat aorta was studied. Diabetes was induced in normal, adrenalectomized and hypophysectomized-cortisone substituted rats by streptozotocin (65 mg/kg body weight). The oxidation of glucose to CO2 was determined during incubation of rat aorta in vitro for 2-3 hours. The aortic glucose oxidation was reduced after hypophysectomy but was unaffected by adrenalectomy. After streptozotocin treatment the rise in blood glucose concentration was similar in normal, adrenalectomized and hypophysectomized-cortisone substituted rats. In shamoperated diabetic rats the aortic glucose oxidation was reduced after a diabetes duration of 4 days. In adrenalectomized diabetic rats the aortic glucose oxidation was not significantly affected after 4 days but was reduced after a diabetes duration of 14 days. When adrenalectomized diabetic rats were treated with hydrocortisone the aortic glucose oxidation was reduced after diabetes for 4 days. After incubation of normal rat aorta in vitro for 6 hours with cortisol (1 microgram/ml) in the incubation medium a decrease in the aortic glucose oxidation was found. Incubation of aorta with only growth hormone had no effect. These results suggest that cortisol is of importance for the lowered glucose oxidation in diabetic rat aorta.  相似文献   

17.
The hydrocortisone (HC) induction of glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) in rat glial C6 cells was inhibited reversibly and in a dose-dependent manner by cytochalasin B (CB). CB had no effect on basal level GPDH, total cellular RNA, DNA or protein content nor did it act as a general inhibitor of the rate of protein synthesis. CB did not appear to be acting via dissociation of microtubules since colcemid had no effect on the induction process. The addition of an alternate energy source (sodium pyruvate) did not relieve the CB inhibition of GPDH induction suggesting that CB is not exerting its effect by blocking glucose utilization. The inhibition by CB is not dependent on the temporal sequence of the induction process since it specifically inhibited GPDH induction at any time it was added. CB did not alter the rate of degradation of GPDH in these cells and direct measurements of the specific rate of synthesis of GPDH demonstrated that CB decreased the induced rate of GPDH synthesis by about 60%. The site of inhibition was more precisely defined by experiments which demonstrated a 60% decrease in specific nuclear binding of 3H-HC even though total cellular uptake of 3H-HC was unaffected. This effect on nuclear binding of HC is sufficient to account for the decreased accumulation of GPDH activity in CB-treated cells.  相似文献   

18.
3H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (KD) = 0.47 +/- 0.04 microM and maximal number of binding sites (Bmax) = 31 +/- 5 pmol.mg prot-1. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 degrees C for 15 days decreased Bmax significantly without affecting KD. Cold-induced decrease in Bmax of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Hypophysectomy of rats decreased significantly both KD and Bmax of IBAT BZP binding. Thyroidectomy, adrenalectomy or ovariectomy did not affect IBAT BZP binding parameters. The BZP analogs diazepam, clonazepan and Ro 5-4864 decreased significantly guanosine 5'-diphosphate binding (GDP) in IBAT mitochondria while co-incubation of Ro 5-4964 or clonazepam with the peripheral type BZP antagonist PK 11195 did not modify BZP activity on GDP binding. Our results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related.  相似文献   

19.
Summary Time- and dose-dependent toxic effects of lead (Pb) acetate on astroglia, oligodendroglia, and meningeal fibroblasts cultured from immature rat brain were measured. Cultures were exposed for 3 d to Pb (1,10, and 100 μM) and then examined immediately (Day 0) or 3 or 10 d after Pb treatment was discontinued. The percentages of astroglia and fibroblasts excluding dye were unaffected by Pb, whereas the percentage of oligodendroglia excluding dye decrease significantly (P<0.01) at all time points after exposure to 100 μM Pb. Lead (100 μM) also reduced the total cell numbers of astroglia, oligodendroglia, and meningeal fibroblasts. Amino acid incorporation into protein by oligodendroglia was stimulated after exposure to 100 μM Pb at all time points and also by 1 and 10 μM on Day 3. Incorporation was stimulated in astroglia only on Day 0 by 10 and 100 μM. Hydrocortisone-stimulated glycerolphosphate dehydrogenase (GPDH) activity was assayed in oligodendroglia cultures. A significant decrease in specific activity was seen after a 4-d exposure to lead. Because oligodendroglia are responsible for myelin synthesis in the central nervous system, and GPDH may synthesize a precursor for myelin lipid synthesis, it was proposed that the hypomyelination observed in lead-intoxicated neonatal rats may result partially from a primary toxic effect on oligodendroglia. GPDH activity was not inhibited by Pb in mixed glial cultures containing both astroglia and oligodendroglia. This result suggests that astroglia in culture have the ability to delay the lead-induced inhibition of oligodendroglial GPDH activity and supports the hypothesis that astroglia in culture serve a protective function. This work was supported by Environmental Protection Agency Grant R811500 and by U. S. Department of Agriculture Project M-6839 Animal Health Formula Funding Project 6652. This work was carried out by J.-N. Wu in partial fulfillment of the requirements for a Master of Science degree in Veterinary Public Health at Texas A&M University.  相似文献   

20.
The level of l-glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) is regulated in the rat brain by glucocorticoids. Following hypophysectomy, the concentration of brain glycerol-3-P dehydrogenase decreases to about 40% of the control. By immunotitration, we have demonstrated that this decrease in glycerol-3-P dehydrogenase activity is due to fewer enzyme molecules rather than less efficient ones. We also demonstrated that the enzyme remaining in the brain after hypophysectomy is identical to that found in the brains of control littermates, as determined by gel permeation chromatography, pH optimum, heat lability, electrophoretic mobility, and Ouchterlony double-diffusion analysis. Since the concentration of glycerol-3-P dehydrogenase in skeletal muscle is not regulated by glucocorticoids, we also compared the brain enzyme to the muscle enzyme. By the above criteria, skeletal muscle glycerol phosphate dehydrogenase is identical to the brain enzyme. This suggests that the same structural gene codes for glycerol-3-P dehydrogenase in brain and muscle and that the difference in response to glucocorticoids is due to the presence of a specific regulatory mechanism in brain that is absent in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号