首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Naturally occurring entomopathogens are important regulatory factors in insect populations. Many species are employed as biological control agents of insect pests in row and glasshouse crops, orchards, ornamentals, range, turf and lawn, stored products, and forestry and for abatement of pest and vector insects of veterinary and medical importance. The comparison of entomopathogens with conventional chemical pesticides is usually solely from the perspective of their efficacy and cost. In addition to efficacy, the advantages of use of microbial control agents are numerous. These include safety for humans and other nontarget organisms, reduction of pesticide residues in food, preservation of other natural enemies, and increased biodiversity in managed ecosystems. As with predators and parasitoids, there are three basic approaches for use of entomopathogens as microbial control agents: classical biological control, augmentation, and conservation. The use of a virus (Oryctes nonoccluded virus), a fungus (Entomophaga maimaiga), and a nematode (Deladenus siricidicola) as innoculatively applied biological control agents for the long-term suppression of palm rhinoceros beetle (Oryctes rhinoceros), gypsy moth (Lymantria dispar), and woodwasp (Sirex noctilio), respectively, has been successful. Most examples of microbial control involve inundative application of entomopathogens. The most widely used microbial control agent is the bacterium Bacillus thuringiensis. The discovery of new varieties with activity against Lepidoptera, Coleoptera, and Diptera and their genetic improvement has enhanced the utility of this species. Recent developments in its molecular biology, mode of action, and resistance management are reviewed. Examples of the use, benefits, and limitations of entomopathogenic viruses, bacteria, fungi, nematodes, and protozoa as inundatively applied microbial control agents are presented. Microbial control agents can be effective and serve as alternatives to broad-spectrum chemical insecticides. However, their increased utilization will require (1) increased pathogen virulence and speed of kill; (2) improved pathogen performance under challenging environmental conditions (cool weather, dry conditions, etc.); (3) greater efficiency in their production; (4) improvements in formulation that enable ease of application, increased environmental persistence, and longer shelf life; (5) better understanding of how they will fit into integrated systems and their interaction with the environment and other integrated pest management (IPM) components; (6) greater appreciation of their environmental advantages; and (7) acceptance by growers and the general public. We envision a broader appreciation for the attributes of entomopathogens in the near to distant future and expect to see synergistic combinations of microbial control agents with other technologies. However, if future development is only market driven, there will be considerable delays in the implementation of several microbial control agents that have excellent potential for use in IPM programs.  相似文献   

2.
A review of the existing basis for maize stem borer IPM is given and the role of pathogens in the system is evaluated. Survey work outlining the major groups of insect pathogens is described; fungi (Beauveria bassiana and Metarhizium anisopliae), bacteria (Bacillus thuringiensis and Serratia marcesens), and viruses (granuloviruses and cytoplasmic polyhedroviruses) were identified. The presence of other unidentified protozoans, nematodes, fungi and viruses was noted. The virulence of some of the more promising known insect pathogens was explored in preliminary bioassays. Considering the cryptic habits of the insects, and the low input agriculture practiced by the majority of maize farmers in sub-Saharan Africa, Beauveria bassiana isolates possessing the capacity to grow systemically in the maize plant are considered one of the more interesting candidates for development as microbial control agents despite limited control in preliminary trials. Further work should also investigate the potential of pathogens of moderate virulence, such as the protozoans and CPVs.  相似文献   

3.
Field populations of larvae of the fruit tree leafrollerArchips argyrospila (Wlk). were practically eliminated following spray application ofBacillus thuringiensis Berliner serotype III at 192 and 80×106 I.U. per litre on the host trees,Cercis occidentalis. Spray applications of lower rates ofB. thurienginsis serotype III at 18.9 and 32.1×106 I.U. per litre and mist application ofB. thuringiensis serotype 1 at 8.0 and 16.0×106 I.U. per litre gave partial control of populations ofA. argyrospila larvae. A granulosis typeBaculovirus, applied by hand sprayer at 1.4×109 granules/ml produced approximately 50% reduction of 5th instarA. argyrospila larvae onC. occidentalis trees. It was concluded thatB. thuringiensis and the granulosis typeBaculovirus are promising control agents forA. argyrospila larvae.  相似文献   

4.
Ants were the most apparent invertebrate scavengers observed foraging on entomopathogenic nematode-killed insects (i.e., insect cadavers containing entomopathogenic nematodes and their symbiotic bacteria) in the present study. Workers of the Argentine ant,Linepithema humile(Mayr), scavenged nematode-killed insects on the surface and those buried 2 cm below the soil surface. Ant workers scavenged significantly more steinernematid-killed (60–85%) than heterorhabditid-killed (10–20%) insects. More 4-day-postinfected cadavers (hosts died within 48 h after exposure to nematodes) were scavenged than 10-day-postinfected cadavers. Ten-day-postinfected hosts contained live infective juvenile nematodes therefore ants may serve as phoretic agents. Other ant species, includingVeromessor andrei(Mayr),Pheidole vistanaForel,Formica pacificaFrancoeur, andMonomoriom ergatogynaWheeler, also scavenged nematode-killed insects. These ant species removed or destroyed about 45% of the steinernematid-killed insects. These results suggest that survival of steinernematid nematodes may be more significantly impacted by invertebrate scavengers, especially ants, than that of heterorhabditid nematodes, and placement of steinernematid-killed insects in the field for biological control may be an ineffective release strategy. Because entomopathogenic nematodes kill insects with the help of symbiotic bacteria, we tested the role of these bacterial species in deterring invertebrate scavengers by injecting bacteria (without nematodes) into insects and placing the cadavers in the field. None of the insects killed by the symbiotic bacterium,Photorhabdus luminescens(Thomas and Poinar) fromHeterorhabditis bacteriophoraPoinar, were scavanged, whereas 70% of the insects killed by the symbiotic bacterium,Xenorhabdus nematophilus(Poinar and Thomas) fromSteinernema carpocapsae(Weiser), and 90% of the insects killed byBacillus thuringiensisBerliner were scavenged by the Argentine ant. We conclude thatP. luminescensis responsible for preventing ants from foraging on heterorhabditid-killed hosts.  相似文献   

5.
Trichoderma/pathogen/plant interaction in pre-harvest food security   总被引:1,自引:0,他引:1  
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.  相似文献   

6.
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.  相似文献   

7.
Early 3rd instarDiacrisia obliqua Walk. larvae were treated with concentrations ofBacillus thuringiensis var.kurstaki (Dipel®) and the growth of treated larvae was assessed. All the doses reduced significantly the weight and survival of the insects (p<0.001).  相似文献   

8.
Biological control agents (biorationals) are increasingly important in pest control concepts. Certain insect viruses, particularly the baculoviruses (nuclear polyhedrosis viruses), are considered to have potential as biological pesticides and could be used widely in the environment. Therefore, test animals must be selected and methods and laboratory systemsdeveloped to evaluate the safety of these agents to nontarget species. A simple laboratory system has been designed and used to determine risks of infectivity and pathogenicity of an insect Baculovirus, originally isolated from the Alfalfa looper, Autographa californica, to a nontarget arthropod, the grass shrimp, Palaemonetes vulgaris, by dietary exposure. This laboratory method also permits evaluation of other microbial biorationals against nontarget aquatic species, and provides an inexpensive standardized procedure of safety testing. Results from this study indicated that histopathological, ultrastructural, and serological methods used provided no evidence that experimental exposure to the virus in our test system caused viral infection or related pathogenicity in the grass shrimp.  相似文献   

9.
A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.  相似文献   

10.
International trade and travel are devastating native flora and fauna in many countries through the intentional and/or unintentional introduction of exotic organisms. Pathway control appears to be particularly effective for microscopic organisms such as mites, nematodes, and fungi that are difficult to see with the naked eye. However, taxonomic and ecological information on such organisms is scarce, sometimes causing time lags or failure in eradication programs. Several groups of mites, nematodes, and fungi commonly share a habitat with insects or use them as dispersal agents (phoresy). Some exotic mites and nematodes are introduced simultaneously with exotic insects, sometimes in wood materials. In Japan, mites, nematodes, and fungi have been collected from lucanid beetles introduced as pets from Southeast Asia. While no lethal nematode species have been collected from lucanid beetles, one hemolymph-sucking mite species, inhabiting the sub-elytral space of its native host, is able to easily switch to the Japanese beetle, Dorcus rectus, killing the insect. Yeasts have also been reported on exotic beetles and laboulbeniomycetes have been found on mites associated with the beetles, although their interactions are unknown. Despite the lack of information available about other mites, nematodes, and fungi associated with intentionally and unintentionally introduced forest insects, our analysis of insect species listed by the International Union for Conservation of Nature suggests that unintentional introductions of the microscopic organisms are quite common as a consequence of the existence of symbiotic relationships such as phoresy and parasitism.  相似文献   

11.
The infection structures, trophism, and ecological character of nematophagous fungi are reviewed in this article on the basis of data extracted from the literature and the most recent experiments conducted in this area. Traditionally, nematophagous fungi are classified into four groups according to their modes of attacking nematodes: nematode-trapping fungi using adhesive or mechanical hyphal traps, endoparasitic fungi using their spores, eggparasitic fungi invading nematode eggs or females with their hyphal tips, and toxin-producing fungi immobilizing nematodes before invasion. In the present review, we focus on the first two groups. The living strategies of these nematophagous fungi depend on the diversity of their infection structures, such as different traps and spore types, which determine the modes of infecting nematodes. The diversity of trophic modes of nematophagous fungi is an important prerequisite for fungal survival and activity in soil. The abundance and activity of Hirsutella rhossiliensis and H. minnesotensis, representatives of endoparasites and potential biocontrol agents against nematodes, are highly dependent on environmental factors. Comprehensive understanding of the survival and activity of nematophagous fungi in soil is fundamental for the exploitation of these fungi as successful biocontrol agents.  相似文献   

12.
《Biological Control》2000,17(1):11-22
This project is part of work underway in our laboratories to test the hypothesis that the induction of soil suppressiveness to plant parasitic nematodes that occurs following planting of velvetbean (Mucuna deeringiana (Bort) Merr.) is associated with the development of an antagonistic microflora in soils and rhizospheres. The specific objective of this investigation was to examine long-term microbial shifts associated with the use of velvetbean in rotations to control nematodes. A crop rotation study was conducted in microplots, consisting of three crop cycles. Cycle 1 involved planting of either velvetbean or cowpea (Vigna unguiculata L.) in the first spring. Cycle 2 during the next fall and winter was fallow or cover-cropped with wheat (Triticum aestivum L.) or crimson clover (Trifolium incarnatum L.). Cycle 3 the next spring was soybean (Glycine max (L.) Merr.). Populations and species diversity of bacteria and fungi in soils or rhizospheres were investigated at the end of each cropping cycle. Rhizosphere fungal populations were significantly smaller on velvetbean than on cowpea at the end of cycle 1. The use of velvetbean in cycle 1 significantly decreased rhizosphere bacterial populations on crops in cycle 2, compared to treatments which had cowpea in cycle 1. Velvetbean also influenced bacterial diversity, generally increasing frequency of bacilli, Arthrobacter spp. and Burkholderia cepacia, while reducing fluorescent pseudomonads. Some of these effects persisted through cycle 3. Fungal diversity was influenced in cycle 1 by velvetbean; however, effects generally did not persist through cycles 2 and 3. The results indicate that the use of velvetbean in a cropping system alters the microbial communities of the rhizosphere and soil, and they are consistent with the hypothesis that the resulting control of nematodes results from induction of soil suppressiveness.  相似文献   

13.
Mortality and frass production bioassays were used to investigate the toxicity of seven strains ofBacillus thuringiensisagainst the adult carrot weevil,Listronotus oregonensis(Le Conte). A semi-artificial diet of carrot foliage with 4% agar was selected to maximize feeding by the insects.Bacillus thuringiensissubsp.tenebrionis(Krieg, Huger, Langenbruch, and Schnetter) (BTT) and two unidentifiedB. thuringiensisstrains, A30 and A429, gave the lowest LC50values. The frass bioassay supported the conclusions of the mortality assay. Mortality of adults continued after their removal from the insecticidal medium, with the highest mortality being caused by strains A429 and BTT. Survivors from the frass bioassay, initially exposed to strains A30, A429, and BTT, did not resume normal levels of feeding after their removal from the insecticidal medium.  相似文献   

14.
RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host‐induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection.  相似文献   

15.
Management programs for major forest defoliators such as gypsy moths or forest tent caterpillars, and crop pests such as the European corn borer have shifted from broad-spectrum insecticides to more environmentally benign microbial pesticides such as Bacillus thuringiensis (foliage sprays and transgenic toxin expression in plant tissues). Phytochemically resistant host plants and natural enemies have been used as alternative pest management strategies (including generalist tachinid flies such as Compsilura, viruses, microsporidians, and fungi), but all of these have some non-target impacts, as described from literature review. A sequence of lab and field studies were conducted to determine non-target impacts on native Lepidoptera in North America. The conclusions reached are that a decision not to spray Bt pesticides (i.e. to allow defoliation and natural pest outbreaks to run their course) could be as bad or worse for non-target Lepidoptera as the microbial insecticides would be. The important concept that must be maintained is that all pest management programs have some risk of negative non-target impacts, but it is the magnitude and relative importance that will remain the most critical issue for environmental impacts and pest management.  相似文献   

16.
Fungi in the genus Lecanicillium (formerly classified as the single species Verticillium lecanii) are important pathogens of insects and some have been developed as commercial biopesticides. Some isolates are also active against phytoparasitic nematodes or fungi. Lecanicillium spp. use both mechanical forces and hydrolytic enzymes to directly penetrate the insect integument and the cell wall of the fungal plant pathogen. In addition to mycoparasitism of the plant pathogen, the mode of action is linked to colonization of host plant tissues, triggering an induced systemic resistance. Recently it was demonstrated that development of Lecanicillium hybrids through protoplast fusion may result in strains that inherit parental attributes, thereby allowing development of hybrid strains with broader host range and other increased benefits, such as increased viability. Such hybrids have demonstrated increased virulence against aphids, whiteflies and the soybean cyst nematode. Three naturally occurring species of Lecanicillium, L. attenuatum, L. longisporum, and an isolate that could not be linked to any presently described species based on rDNA sequences have been shown to have potential to control aphids as well as suppress the growth and spore production of Sphaerotheca fuliginea, the causal agent of cucumber powdery mildew. These results suggest that strains of Lecanicillium spp. may have potential for development as a single microbial control agent effective against several plant diseases, pest insects and plant parasitic nematodes due to its antagonistic, parasitic and disease resistance inducing characteristics. However, to our knowledge, no Lecanicillium spp. have been developed for control of phytopathogens or phytoparasitic nematodes.  相似文献   

17.
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.  相似文献   

18.
A 3-year field rotation study was conducted to assess the potential of switchgrass (Panicum virgatum) to suppress root-knot nematodes (Meloidogyne arenaria), southern blight (Sclerotium rolfsii), and aflatoxigenic fungi (Aspergillus sp.) in peanut (Arachis hypogaea L.) and to assess shifts in microbial populations following crop rotation. Switchgrass did not support populations of root-knot nematodes but supported high populations of nonparasitic nematodes. Peanut with no nematicide applied and following 2 years of switchgrass had the same nematode populations as continuous peanut plus nematicide. Neither previous crop nor nematicide significantly reduced the incidence of pods infected with Aspergillus. However, pod invasion by A. flavus was highest in plots previously planted with peanut and not treated with nematicide. Peanut with nematicide applied at planting following 2 years of switchgrass had significantly less incidence of southern blight than either continuous peanut without nematicide application or peanut without nematicide following 2 years of cotton. Peanut yield did not differ among rotations in either sample year. Effects of crop rotation on the microbial community structure associated with peanut were examined using indices for diversity, richness, and similarity derived from culture-based analyses. Continuous peanut supported a distinctly different rhizosphere bacterial microflora compared to peanut following 1 year of switchgrass, or continuous switchgrass. Richness and diversity indices for continuous peanut rhizosphere and geocarposphere were not consistently different from peanut following switchgrass, but always differed in the specific genera present. These shifts in community structure were associated with changes in parasitic nematode populations.  相似文献   

19.
The pre- and postparasitic phases of entomophilic nematodes are exposed to different microenvironments which should be changed in order to facilitate the use of nematodes as biological control agents of insects. The mixing of “thick water” with nematodes prior to spraying on exposed surfaces retards nematode desiccation and so increases the mortality of forest and agricultural insect pests. Aquatic larvae of Simulium vittatum and of Culiseta inornata feed fastest at 20 and 25 C, respectively, and so engulf more infective larvae of Neoaplectana carpocapsae (DD-136). When exposed to N. carpocapsae (DD-136) on potato foliage, the percentage of encapsulated nematodes in the haemocoel of adult Leptinotarsa decemlineata was less than in the third stage nymphs. The percentage of unencapsulated, dead nematodes was greatest in the nymphal stages. The value of baits and phagostimulants to increase the insects' oral uptake of infective nematodes and of the manipulation of the insect's physiological processes so as to modify its susceptibility to nematodes is discussed.  相似文献   

20.
The fungal antagonists of nematodes consist of a great variety of organisms belonging to widely divergent orders and families of fungi. They include the nematode-trapping fungi, endoparasitic fungi, parasites of nematode eggs and cysts, and fungi which produce metabolites toxic to nematodes. The diversity, adaptations, and distribution of nematode-destroying fungi and taxonomic problems encountered in their study are reviewed. The importance of nemato-phagous fungi in soil biology, with special emphasis on their relationship to populations of plant-parasitic nematodes, is considered. While predacious fungi have long been investigated as possible biocontrol agents and have often exhibited spectacular results in vitro, their performance in field studies has generated little enthusiasm among nematologists. To date no species has demonstrated control of any plant pest to a degree achieved with nematicides, but recent studies have provided a much clearer concept of possibilities and problems in the applied use of fungal antagonists. The discovery of new species, which appear to control certain pests effectively under specific conditions, holds out some promise that fungi may be utilized as alternatives to chemical control after a more thorough and expanded study of their biology and ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号