首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We synthesized and purified four oligopeptides containing four lysines (KKKK, GKKGGKK, KKGGGKK, and KGKGKGK) as models for the plastocyanin (PC) interacting site of cytochrome f. These peptides competitively inhibited electron transfer between cytochrome c and PC. The inhibitory effect increased as the peptide concentrations were increased. The association constants between PC and the peptides did not differ significantly (3500-5100 M(-1)), although the association constant of PC-KGKGKGK was a little larger than the constants between PC and other peptides. Changes in the absorption spectrum of PC were observed when the peptides were added to the PC solution: peaks and troughs were detected at about 460 and 630 nm and at about 560 and 700 nm, respectively, in the difference absorption spectra between the spectra with and without peptides. These changes were attributed to the structural change at the copper site of PC by interaction with the peptides. The structural change was most significant when tetralysine was used. These results show that binding of the oligopeptide to PC is slightly more efficient when lysines are distributed uniformly within the peptide, whereas the structural change of PC becomes larger when the lysines are close to each other within the peptide.  相似文献   

2.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

3.
M Harel  C T Su  F Frolow  I Silman  J L Sussman 《Biochemistry》1991,30(21):5217-5225
The determination of three separate gamma-chymotrypsin structures at different temperatures and resolutions confirmed the presence of electron density in the active site, which could be interpreted as an oligopeptide as had previously been suggested by Dixon and Matthews [(1989) Biochemistry 28, 7033-7038]. HPLC analyses of the enzyme before and after crystallization demonstrated the presence of a wide variety of oligopeptides in the redissolved crystal, most with COOH-terminal aromatic residues, as expected of the products of chymotrypsin cleavage, which appeared to arise from extensive autolysis of the enzyme under the crystallization conditions. The refined structures agree well with the conformation of both gamma-chymotrypsin and alpha-chymotrypsin. The electron density in the active site is thus interpreted as arising from a repertoire of autolysed oligopeptides produced concomitantly with crystallization. The COOH-terminal carbons of the polypeptide(s) display short contact distances (1.97, 2.47, and 2.13 A, respectively) to Ser195 O gamma in all three refined structures, but the electron density is not continuous between these two atoms in any of them. This suggests that some sequences are covalently bound as enzyme intermediates while others are noncovalently bound as enzyme-product complexes.  相似文献   

4.
We have investigated the synthesis of oligopeptides containing glycine and tyrosine in the presence of the clay minerals montmorillonite (non-exchanged, SAz-1) and Cu(2+) exchanged hectorite. In both cases, homopolymers of the two amino acids are formed, as are mixed peptides. In the case of Cu(2+) hectorite, mixed oligopeptides up to trimers are detected in small amounts. For montmorillonite, heterogeneous oligopeptides up to hexamers are detected. Our experiments indicate montmorillonite is more effective in promoting oligopeptide formation than Cu(2+) hectorite. Analysis of the oligopeptide sequences formed on the montmorillonite surfaces indicates preferential synthesis of certain Gly-Tyr sequences over others.  相似文献   

5.
The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione, carnosine, homocarnosine, and anserine are considered to be cellular antioxidants, the present work suggests that instead of protecting against oxidative damage, these oligopeptides may facilitate the Ni(2+)-mediated free radical generation and thus may participate in the mechanism(s) of Ni2+ toxicity and carcinogenicity.  相似文献   

6.
The utilization of prolyl peptides by Escherichia coli   总被引:4,自引:0,他引:4  
Peptides that have an N-terminal proline residue are taken up by Escherichia coli and are degraded by intracellular peptidases. A mutant that is unable to transport oligopeptides with N-terminal alpha-amino acids is also unable to transport the peptides with N-terminal proline. Dipeptides and oligopeptides can prevent the uptake of the corresponding prolyl peptides and the converse competitive interactions are also observed. Although the peptide alpha-amino group is essential to the process of peptide transport, the results with the prolyl peptides indicate that the dipeptide and oligopeptide permeases can handle peptides with either an alpha-amino or alpha-imino group.  相似文献   

7.
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.  相似文献   

8.
Aims: Oenococcus oeni is a slow‐growing wine bacterium with a low growth yield. It thrives better on complex nitrogen sources than on free amino‐acid medium. We aimed to characterize the oligopeptide use of this micro‐organism. Methods and Results: Several peptides of two to eight amino‐acid residues were able to provide essential amino acids. The disappearance of various peptides from extracellular medium was assessed with whole cells. Initial rates of utilization varied with the peptide, and free amino acids were released into the medium. Conclusions: Oenococcus oeni was able to transport the oligopeptides with two to five amino‐acid residues tested and to hydrolyse them further. Significance and Impact of the Study: This study has clear implications for the relationship between wine nitrogen composition and the ability of O. oeni to cope with its environment.  相似文献   

9.
Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) were performed to investigate the difference in microenvironments and functions between tyrosine Z (Y(Z)) and tyrosine D (Y(D)). Mn-depletion or Ca(2+)-depletion causes extension of the lifetime of tyrosine radical Y(Z)(*), which can be trapped by rapid freezing after illumination at about 250 K. Above pH 6.5, Y(Z)(*) radical in Mn-depleted PS II shows similar EPR and ENDOR spectra similar to that of Y(D)(*) radical, which are ascribed to a typical neutral tyrosine radical. Below pH 6.5, Y(Z)(*) radical shows quite different EPR and ENDOR spectra. ENDOR spectra show the spin density distribution of the low-pH form of Y(Z)(*) that has been quite different from the high-pH form of Y(Z)(*). The spin density distribution of the low-pH Y(Z)(*) can be explained by a cation radical or the neutral radical induced by strong electrostatic interaction. The pH dependence of the activation energy of the recombination rate between Y(Z)(*) and Q(A)(-) shows a gap of 4.4 kJ/mol at pH 6.0-6.5. In the Ca(2+)-depleted PS II, Y(Z)(*) signal was the mixture of the cation-like and normal neutral radicals, and the pH dependence of Y(Z)(*) spectrum in Ca(2+)-depleted PS II is considerably different from the neutral radical found in Mn-depleted PS II. Based on the recent structure data of cyanobacterial PS II, the pH dependence of Y(Z)(*) could be ascribed to the modification of the local structure and hydrogen-bonding network induced by the dissociation of ASP170 near Y(Z).  相似文献   

10.
The stopped-flow kinetics of the reaction between oligopeptides containing tryptophan residues andN-bromosuccinimide (NBS) were studied in 50 mM sodium phosphate buffer (pH 7.0) containing sodium dodecyl sulfate (SDS). Decreases in the reaction rates attributable to the interaction between oligopeptides and SDS were observed, and oligopeptides studied were classified into types I and II on the basis of the interaction modes. Type I oligopeptides were dissolved in SDS micelles; type II oligopeptides interacted cooperatively with SDS monomers. The manner of interaction between SDS and oligopeptides of type II could be interpreted by a simple equilibrium relation: oligopeptide+n·(SDS)=oligopeptide·(SDS) n .  相似文献   

11.
Pseudomonas putida assimilates peptides and hydrolyses them with intracellular peptidases. Amino acid auxotrophs (his, trp, thr or met) grew on a variety of di- and tripeptides up to twice as slowly as with free amino acids. Pseudomonas putida has separate uptake systems for both dipeptides and oligopeptides (three or more residues). Although the dipeptide system transported a variety of structurally diverse dipeptides it did not transport peptides having either unprotonatable N-terminal amino groups, blocked C-terminal carboxyl groups, D-residues, three or more residues, N-methylated peptide bonds, or beta-amino acids. Oligopeptide uptake lacked amino acid side-chain specificity, required a free N-terminal L-residue and had an upper size limit. Glycylglycyl-D,L-p-fluorophenylalanine inhibited growth of P. putida. Uptake of glycylglycyl[I-14C]alanine was rapid and inhibited by 2,4-dinitrophenol. Both dipeptide and oligopeptide uptake were constitutive. Dipeptides competed with oligopeptides for oligopeptide uptake, but oligopeptides did not compete in the dipeptide system. Final bacterial yields were 5 to 10 times greater when P. putida his was grown on histidyl di- or tripeptides rather than on free histidine because the histidyl residue was protected from catabolism by L-histidine ammonia-lyase. Methionine peptides could satisfy the methionine requirements of P. maltophilia. Generation times on glycylmethionine and glycylmethionylglycine were equal to those obtained with free methionine. Methionylglycylmethionylmethionine gave a generation time twice that of free methionine. Growth of P. maltophilia was inhibited by glycylglycyl-D,L-p-fluorophenylalanine.  相似文献   

12.
Structure and structure-function relations of naturally occurring oligopeptides and peptide receptors are discussed. An approach to inferring function of low-molecular peptides in the direction from their structure is postulated. Diverse biological activities of oligopeptides supposedly arise from a limited number of preferable spatial structures which may exist under physiological conditions. Each particular function of an oligopeptide is connected with a definite spatial structure, belonging to the set of the low-energy conformations. A method is suggested for constructing a synthetic analogue with a predetermined physiologically active conformation, prior to all chemical and biological tests.  相似文献   

13.
Pan J  Lin W  Wang W  Han Z  Lu C  Yao S  Lin N  Zhu D 《Biophysical chemistry》2001,89(2-3):193-199
By use of pulse radiolysis techniques, the radical cations of purine nucleotides have been successfully produced by the SO4- ion oxidation. Time-resolved spectroscopic evidence is provided that the one-electron-oxidized radicals of dAMP and dGMP can be efficiently repaired by aromatic amino acids (including tyrosine and tryptophan) via electron transfer reaction. As a model peptide, Arg-Tyr-AcOH was also investigated with regard to its interaction with deprotonated purine radical cations. The rate constants of the electron transfer reactions were determined to be (1 approximately 5) x 10(8) dm(3) mol(-1) s(-1). These results suggest that the aromatic amino acids in DNA-associated proteins may play some role in electron transfer reactions through DNA.  相似文献   

14.
The interaction between cytochrome f and its electron acceptor plastocyanin (PC) was studied. To address the question of which specific regions and which of the positively charged residues of cytochrome f are important for the interaction with the negatively charged residues of PC we have used two different experimental approaches. Cytochrome f was proteolytically cleaved and fragments that could bind to a PC-affinity column were isolated. The smallest of these fragments was analysed to give information on the minimum structural requirement for binding to PC. By this procedure, we identified a peptide of approx. 11 kDa, containing the heme binding site, and having an N-terminal sequence identical to that of the mature cytochrome f. This finding suggests that the first 90 amino acids of cytochrome f contain at least some of the residues interacting with PC. The second approach involved modification of Arg residues of cytochrome f with the specific chemical modifier, hydroxyphenylglyoxal (HPG). Cytochrome f modification was performed in the absence of PC to enable identification of residues that are protected from modification when PC is bound to cytochrome f. Two peptides containing Arg residues which are modified in the absence of PC, but are not modified when PC is present, were isolated. Sequence analysis of these two peptides revealed that Arg residues no. 88 and 154 of cytochrome f are the residues that are protected from modification when cytochrome f is bound to PC, suggesting a role for these residues in the binding of cytochrome f to PC.  相似文献   

15.
Growth of an amino acid auxotroph of Neurospora crassa on oligopeptides is shown to occur by extracellular hydrolysis, with subsequent utilization of monomer amino acid residues, and by transport of peptides. Peptides with a hydrodynamic volume greater than that of trileucine are not transported, and this lack of transport is shown to be due to restriction by the oligopeptide transport system rather than the cell wall.  相似文献   

16.
The primary quinone acceptor radical anion Q(A)(-)(*) (a menaquinone-9) is studied in reaction centers (RCs) of Rhodopseudomonas viridis in which the high-spin non-heme Fe(2+) is replaced by diamagnetic Zn(2+). The procedure for the iron substitution, which follows the work of Debus et al. [Debus, R. J., Feher, G., and Okamura, M. Y. (1986) Biochemistry 25, 2276-2287], is described. In Rps. viridisan exchange rate of the iron of approximately 50% +/- 10% is achieved. Time-resolved optical spectroscopy shows that the ZnRCs are fully competent in charge separation and that the charge recombination times are similar to those of native RCs. The g tensor of Q(A)(-)(*) in the ZnRCs is determined by a simulation of the EPR at 34 GHz yielding g(x) = 2.00597 (5), g(y) = 2.00492 (5), and g(z) = 2.00216 (5). Comparison with a menaquinone anion radical (MQ(4)(-)(*)) dissolved in 2-propanol identifies Q(A)(-)(*) as a naphthoquinone and shows that only one tensor component (g(x)) is predominantly changed in the RC. This is attributed to interaction with the protein environment. Electron-nuclear double resonance (ENDOR) experiments at 9 GHz reveal a shift of the spin density distribution of Q(A)(-)(*) in the RC as compared with MQ(4)(-)(*) in alcoholic solution. This is ascribed to an asymmetry of the Q(A) binding site. Furthermore, a hyperfine coupling constant from an exchangeable proton is deduced and assigned to a proton in a hydrogen bond between the quinone oxygen and surrounding amino acid residues. By electron spin-echo envelope modulation (ESEEM) techniques performed on Q(A)(-)(*) in the ZnRCs, two (14)N nuclear quadrupole tensors are determined that arise from the surrounding amino acids. One nitrogen coupling is assigned to a N(delta)((1))-H of a histidine and the other to a polypeptide backbone N-H by comparison with the nuclear quadrupole couplings of respective model systems. Inspection of the X-ray structure of Rps. viridis RCs shows that His(M217) and Ala(M258) are likely candidates for the respective amino acids. The quinone should therefore be bound by two H bonds to the protein that could, however, be of different strength. An asymmetric H-bond situation has also been found for Q(A)(-)(*) in the RC of Rhodobacter sphaeroides. Time-resolved electron paramagnetic resonance (EPR) experiments are performed on the radical pair state P(960)(+) (*)Q(A)(-)(*) in ZnRCs of Rps. viridis that were treated with o-phenanthroline to block electron transfer to Q(B). The orientations of the two radicals in the radical pair obtained from transient EPR and their distance deduced from pulsed EPR (out-of-phase ESEEM) are very similar to the geometry observed for the ground state P(960)Q(A) in the X-ray structure [Lancaster, R., Michel, H. (1997) Structure 5, 1339].  相似文献   

17.
Endothiopeptides are oligopeptides in which one or more oxoacyl moieties in peptide groups are replaced with thioacyl moieties. The stereochemical consequences of this replacement are discussed and compared with results from X-ray crystallographic determinations of small oligopeptides containing one or two thiopeptide groups. The analysis shows that the conformations normally observed around C alpha carbon atoms in proteins are also stereochemically favourable for peptides in which a thiopeptide group has been introduced. Limitations are only present in cases where the thiopeptide is part of structural elements like helices and beta-sheets. This opens the possibility of using one or more thiopeptide groups as functional modifiers of biologically active oligopeptide and protein molecules.  相似文献   

18.
Mechanisms of the reactions of representative dipeptides (Gly2, Gly-Ala), oligopeptides (Gly3, Gly4) and the polypeptide (poly-Gly)n) in solution and clay suspensions at 85 degrees C were investigated. The reaction products and their yields were analysed and determined by means of HPLC. Interestingly, hydrolysis, where water molecules act as the reactant, was not the main reaction, even for oligopeptides. Formation of cyclic dipeptides prevailed in the reactions of dimers as well as oligopeptides. The breakdown of oligopeptide molecules proceeded via an intramolecular cyclization reaction. For example, the reaction of Gly3 led to the formation of equal amounts of cyclic dipeptide, c(Gly)2 and Gly. The presence of clay (montmorillonite) significantly increased yields in the reactions of dipeptides but it did not have much effect on the reactions of oligopeptides. However, an opposite effect of clay, protection of poly(Gly)n against decomposition, was proven.  相似文献   

19.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

20.
Recent X-ray crystallographic studies of aromatic oligopeptides have shown that aromatic amino acid side chains participate in enthalpically-favorable, weakly polar interactions that stabilize oligopeptide folds. These interactions are important in peptides used as model therapeutic agents for sickle-cell disease, in vasopressin (antidiuretic hormone) and in [Leu]-enkephalin. The aromatic groups of globular proteins display similar behavior and thereby contribute to the stability of the three-dimensional structure of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号