首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice straw and corn stalks were used as fermentation substrate for the evaluation of cellulases activity secreted by different organisms. The substrates were pretreated with alkaline hydrogen peroxide (AHP) for 6 h at 30 and 60 °C. From the fermentation studies, rice straw and corn stalks substrates showed the highest cellulases activity after 96 h at 60 °C of pre-treatment.  相似文献   

2.
3.
Palm kernel press cake (PKC) is a residue of palm oil extraction, which was found to contain 48.5% of total carbohydrates of which 35.2% was mannan. The present study examines enzymatic hydrolysis of polysaccharides from the cell-wall material present in PKC to obtain monosaccharides that can be substrate in various fermentation processes such as ethanol production. The requirements for pretreatment were investigated and it was found that mannan in PKC was readily hydrolysed without any pretreatment. Several enzyme preparations were tested and Mannaway 25L was found as the best for releasing mannose, and Gammanase 1.0L worked well in degrading cellulose and mannose. Binary mixtures of enzymes were tested to increase the conversion, and 1:1 mixture of Mannaway 25L and Gammanase 1.0L showed good synergistic effect releasing 30% more mannose than the sum obtained using these enzymes individually. Using an enzyme loading of 2.3 mg protein/g PKC resulted in 63% of mannan in PKC being hydrolysed to mannose in 24 h, and in 96 h a total of 365 g mannose and glucose could be produced per kg PKC. Finally, PKC was hydrolysed and fermented using Saccharomyces cerevisiae with an ethanol yield of 125 g/kg PKC.  相似文献   

4.
A fermentation system to test the merging of very-high-gravity (VHG) and multistage continuous culture fermentation (MCCF) technologies was constructed and evaluated for fuel ethanol production. Simulated mashes ranging from 15% to 32% w/v glucose were fermented by Saccharomyces cerevisiae and the dilution rates were adjusted for each glucose concentration to provide an effluent containing less than 0.3% w/v glucose (greater than 99% consumption of glucose). The MCCF can be operated with glucose concentrations up to 32% w/v, which indicates that the system can successfully operate under VHG conditions. With 32% w/v glucose in the medium reservoir, a maximum of 16.73% v/v ethanol was produced in the MCCF. The introduction of VHG fermentation into continuous culture technology allows an improvement in ethanol productivity while producing ethanol continuously. In comparing the viability of yeast by methylene blue and plate count procedures, the results in this work indicate that the methylene blue procedure may overestimate the proportion of dead cells in the population. Ethanol productivity (Yps) increased from the first to the last fermentor in the sequence at all glucose concentrations used. This indicated that ethanol is more effectively produced in later fermentors in the MCCF, and that the notion of a constant Yps is not a valid assumption for use in mathematical modeling of MCCFs. Journal of Industrial Microbiology & Biotechnology (2001) 27, 87–93. Received 20 January 2001/ Accepted in revised form 28 April 2001  相似文献   

5.
This study determined the influence of substrate degradation on power generation in microbial fuel cells (MFCs) and microbial community selection on the anode. Air cathode MFCs were fed synthetic medium containing different substrates (acetate, glucose and starch) using primary clarifier sewage as source of electroactive bacteria. The complexity of the substrate affected the MFC performance both for power generation and COD removal. Power output decreased with an increase in substrate complexity from 99 ± 2 mW m−2 for acetate to 4 ± 2 mW m−2 for starch. The organic matter removal and coulombic efficiency (CE) of MFCs with acetate and glucose (82% of COD removal and 26% CE) were greater than MFCs using starch (60% of COD removal and 19% of CE). The combined hydrolysis–fermentation rate obtained (0.0024 h−1) was considerably lower than the fermentation rate (0.018 h−1), indicating that hydrolysis of complex compounds limits current output over fermentation. Statistical analysis of microbial community fingerprints, developed on the anode, showed that microbial communities were enriched according to the type of substrate used. Microbial communities producing high power outputs (fed acetate) clustered separately from bacterial communities producing low power outputs (fed complex compounds).  相似文献   

6.
Production of fuel alcohol from oats by fermentation   总被引:1,自引:0,他引:1  
Very high gravity (>30 g dissolved solids per 100 ml) mashes were prepared from hulled and hulless oats and fermented at 20° C with active dry yeast to produce ethanol. Excessive viscosity development during mashing was prevented by hydrolyzing -glucan with crude preparations of -glucanase or Biocellulase. Both these preparations possessed endo--glucanase activity. By using these enzymes and by decreasing the water to grain ratio, very high gravity mashes with low viscosity were prepared. Unlike wheat and barley mashes, oat mashes contained sufficient amounts of assimilable nitrogen to promote a fast rate of fermentation. The free amino nitrogen (FAN) content of oat mash could be predicted by the equation, mg FAN L–1=8.9n wheren is the number of grams of dissolved solids in 100 ml of mash supernatant fluid. Ethanol yields of 353.2±3.7 L and 317.6±1.3 L were obtained per tonne (dry weight basis) of hulless (59.8% starch) and hulled (50.8% starch) oats respectively. The efficiency of conversion of starch to ethanol was the same in normal and very high gravity mashes.  相似文献   

7.
《Process Biochemistry》2007,42(5):834-839
Two different process configurations, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were compared, at 8% water-insoluble solids (WIS), regarding ethanol production from steam-pretreated corn stover. The enzymatic loading in these experiments was 10 FPU/g WIS and the yeast concentration in SSF was 1 g/L (dry weight) of a Saccharomyces cerevisiae strain. When the whole slurry from the pretreatment stage was used as it was, diluted to 8% WIS with water and pH adjusted, SSF gave a 13% higher overall ethanol yield than SHF (72.4% versus 59.1% of the theoretical). The impact of the inhibitory compounds in the liquid fraction of the pretreated slurry was shown to affect SSF and SHF in different ways. The overall ethanol yield (based on the untreated raw material) decreased when SSF was run in absence on inhibitors compared to SSF with inhibitors present. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the case of SHF. However, the SHF yield achieves in the absence of inhibitors was still lower than the SSF yield achieves with inhibitors present.  相似文献   

8.
9.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

10.
Summary Extrusion and conventional cooking of corn for ethanol production were compared. Extrusion processing requires less energy and water than conventional cooking methods. Optimal autogenous extrusion conditions were determined as: feed rate=5.2kg/min, moisture=15% (wet basis) and extrusion discharge temperature=1600 C. Improved yields of glucose and ethanol from the extruded samples were found over conventionally cooked samples.  相似文献   

11.
Summary Studies on alcoholic fermentation in successive batches with different media demonstrated that the presence of soy flour and, especially, corn flour resulted in a large reduction in the prejudicial effect of short chain fatty acids (C6 - C10) on the conservation of the original trehalose content of commercial yeast (Saccharomyces cerevisiae), clearly favoring the cell viability.  相似文献   

12.
13.
14.
Kinetic studies of the enzymatic hydrolysis of molasses were conducted using glucoamylase. Central Sugar Refinery SDN BHD contains 13-20% glucose. The molasses was diluted and the kinetic experiments were conducted at 67 degrees C with 100-1000 mg/l of glucoamylase. The glucose contents of the molasses were enhanced after hydrolysis of molasses solution with 1000 mg/l glucoamylase. A Lineweaver-Burk plot was obtained based on enzyme kinetic data. The rate constant, Km and maximum reaction rate, Vmax for 500 mg/l of glucoamylase were 100 mmol/l (18 g/l) and 5 mmol/l min (0.9 g/l min), respectively. The maximum reaction rate, Vmax for 1000 mg/l of glucoamylase was doubled, to 100 mmol/l (18 g/l) and the rate constant, Km was the same for 500 mg/l of glucoamylase. The substrate inhibition model was noncompetitive based on the resulting Lineweaver-Burk plot for enzyme concentration of 500 and 1000 mg/l.  相似文献   

15.
It was shown that the enzymatic preparation Celloviridin G20x can be used for the hydrolysis of alpha-chitin of various origin. The purity of the final product of hydrolysis, N-acetylglucosamine, was monitored using HPLC.  相似文献   

16.
17.
18.
19.
The enzymatic digestibility of alkali/peracetic acid (PAA)-pretreated bagasse was systematically investigated. The effects of initial solid consistency, cellulase loading and addition of supplemental β-glucosidase on the enzymatic conversion of glycan were studied. It was found the alkali-PAA pulp showed excellent enzymatic digestibility. The enzymatic glycan conversion could reach about 80% after 24 h incubation when enzyme loading was 10 FPU/g solid. Simultaneous saccharification and fermentation (SSF) results indicated that the pulp could be well converted to ethanol. Compared with dilute acid pretreated bagasse (DAPB), alkali-PAA pulp could obtain much higher ethanol and xylose concentrations. The fermentation broth still showed some cellulase activity so that the fed pulp could be further converted to sugars and ethanol. After the second batch SSF, the fermentation broth of alkali-PAA pulp still kept about 50% of initial cellulase activity. However, only 21% of initial cellulase activity was kept in the fermentation broth of DAPB. The xylose syrup obtained in SSF of alkali-PAA pulp could be well converted to 2,3-butanediol by Klebsiella pneumoniae CGMCC 1.9131.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号