首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.  相似文献   

2.
位于亚热带的浙江天童和古田山常绿阔叶林大样地分布有较高比例的落叶树种,那么它们与常绿树种的共存机制是什么?常绿树种和落叶树种生态习性差异较大,二者对生境的选择应有所不同,我们推测生境分化可能是两类植物实现共存的主要机制。为检验该假设,我们以天童20ha动态样地调查数据为依托,选择个体数≥20的55个常绿树种和42个落叶树种作为分析对象,用典范对应分析(CCA)研究了地形因子对二者分布的影响差异,用torus转换检验来分析常绿树种和落叶树种与各类地形生境的关联。结果如下:(1)CCA分析表明地形因子对常绿树种分布的解释量为19.2%,对落叶树种分布的解释量为7.0%。(2)torus转换检验结果表明,与沟谷成正关联的常绿树种和落叶树种的比例分别为16.4%和28.6%,成负关联的比例分别为40%和7%;与山脊成正关联的常绿树种和落叶树种的比例分别为41.8%和4.8%,成负关联的比例分别为10.9%和47.6%;与受干扰生境成正关联的常绿树种和落叶树种的比例分别为16.4%和42.9%。上述结果说明地形对常绿树种分布的影响大于落叶树种;两个植物类群对生境的选择多呈现相反格局,尤其是在沟谷生境和山脊生境,这进一步表明生境分化是常绿树种和落叶树种共存的重要机制之一,生态位理论在一定程度上能较好地解释亚热带常绿阔叶林物种多样性的维持。  相似文献   

3.
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence.  相似文献   

4.
Aims Spatial distribution patterns of species reflect not only the ecological processes but also the habitat features that are related to species distribution. In karst topography, species distribution patterns provide more specific information about their environments. The objectives of this study are as follows: (i) to analyse and explain the spatial distribution patterns of conspecific trees in an old-growth subtropical karst forest; (ii) to investigate pattern changes at different spatial scales; (iii) to test the spatial pattern similarity (or dissimilarity) between trees at different abundances, diameter at breast height classes, canopy layers and different functional groups (shade tolerance and seed dispersal mode); (iv) to examine whether habitat heterogeneity has an important effect on the species spatial distribution.Methods The spatial distributions of woody species with ≥20 individuals in a 1-ha subtropical karst forest plot at Maolan in southwestern China were quantified using the relative neighbourhood density Ω based on the average density of conspecific species in a circular neighbourhood around each species.Important findings Aggregated distribution is the dominant pattern in the karst forest, but the ratio of aggregated species in total species number decreases with an increase in spatial scale. Less abundant species are more aggregated than most abundant species. Aggregation is weaker in larger diameter classes, which is consistent with the prediction of self-thinning. Seed dispersal mode influences spatial patterns, with species dispersed by animals being less aggregated than those dispersed by wind and gravity. Other species functional traits (e.g. shade tolerance) also influence the species spatial distributions. Moreover, differences among species habitat associations, e.g. with rocky outcrops, play a significant role in species spatial distributions. These results indicate that habitat heterogeneity, seed dispersal limitation and self-thinning primarily contribute to the species spatial distributions in this subtropical karst forest.  相似文献   

5.
Topographic niche differentiation (TND) is believed to facilitate the coexistence of tree species, but its effects are not well established for minor species or for life stages beyond recruitment. In this study, the effects of topography (slope inclination and topographic configuration) on the demographic parameters (mortality, diameter growth rate and recruitment rate) of both major and minor species in a species-rich temperate forest were examined using a mixed-model approach. The model selection analysis detected interspecies difference in the response of recruitment rate to topographic configuration. However, mortality and diameter growth rate of stems with DBH ≥ 5 cm did not show any species-specific response to two topographic parameters. The recruitment rate of major species tended to be higher under topographic conditions where many stems of the species already existed, suggesting significant habitat segregation. No such correlation was found for minor species. These results suggest TND has a limited effect on habitat segregation among species, and that other mechanisms also contributed to coexistence, especially when considering minor species.  相似文献   

6.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

7.
Density dependence is prevalent in a heterogeneous subtropical forest   总被引:1,自引:0,他引:1  
Yan Zhu  Xiangcheng Mi  Haibao Ren  Keping Ma 《Oikos》2010,119(1):109-119
Although negative conspecific density dependence among neighbours is widely studied, the general prevalence of the effects is still poorly understood due to a lack of studies from zonal forests other than the tropics. In addition, the detection of density dependence may be confounded by the influence of habitat heterogeneity. Here we examined the spatial distributions of 47 common tree species (diameter at breast height≥1  cm) using the pair-correlation function g(r) in a fully mapped 24-ha subtropical forest in China. We first investigated whether habitat heterogeneity influenced tree distributions, and then examined the conspecific tree patterns and density dependence after removing the effects of habitat heterogeneity. We found that the forest plot exhibited strong large-scale heterogeneity in the distribution of both large adult trees of different growth forms and individual species. After the habitat heterogeneity was accounted for, 39 of the 47 species (83.0%) were found to exhibit density dependence predominantly at close distances among neighbors. Our findings highlight density dependence as a prevalent mechanism for regulating the population spatial structure of most tree species in the species-rich subtropical forest studied here. Furthermore, the occurrence of density dependence is closely associated with species abundance and the strength of conspecific aggregation at local scales. Abundant species with high strength of conspecific aggregation tend to show density dependence.  相似文献   

8.
Lianas are important vegetation components that control structure and function, especially in tropical and subtropical forests. To explore the spatial assembly mechanisms of a subtropical liana community, we tested the following hypotheses: spatial distributions of subtropical lianas are determined by forest structures and topographic features, which are surrogates for host/light availability and edaphic/water conditions, respectively, and these effects are mediated through species functional traits. We examined the spatial distribution of lianas in two plots (areas 9 and 16 ha) representing landscapes in an intact forest and a secondary forest, and analyzed spatial distribution pattern at the species level using a simple, spatially explicit model. We also examined the correlations between determinant factors for species distribution and species functional traits, including climbing habits, leaf traits and wood density. The spatial distribution of lianas was controlled mainly by topographic gradient. Most species had preferences for concave topographies, i.e., valley habitats. Any covariates related to the host (or to light) had little influence on the distribution of most liana species. Distributional responses to topography were different among species, and associated significantly with leaf nitrogen content and climbing habit, but not with wood density. The correlation between variation in habitat preferences and leaf economic spectrum suggests that an environmental filter for physiological response to topography is the important mechanism shaping the spatial patterns of this subtropical liana community.  相似文献   

9.
木质藤本植物是热带、亚热带山地森林重要的组分之一, 在森林动态、生态系统过程和森林生物多样性形成与维持等方面具有重要作用。本文调查了哀牢山中山湿性常绿阔叶林木质藤本植物的多样性及其在垂直和水平空间上的分布规律。在20个20 m × 50 m的样地中共调查到DBH≥0.2 cm的木质藤本植物1,145株, 隶属于19科25属29种, 其中物种最丰富的科为菝葜科(4种)和蔷薇科(3种), 但多度最高的科为葡萄科(363株, 占总株数的31.7%)。研究发现林下木质藤本(通常DBH < 1 cm)拥有较高的物种丰富度和多度, 对木质藤本植物多样性具有较大的贡献。有55.7%的个体分布在林下层, 林冠层占28.8%, 亚冠层只有15.5%。木质藤本的垂直空间分布在不同径级、不同攀援类型之间具有明显的差异。 从水平空间分布来看, 地形是影响木质藤本的一个重要因素: 沟谷木质藤本的物种丰富度、多度和基面积分别是坡面的171%, 420%和606%; 有12个物种只分布在沟谷生境。这表明哀牢山中山湿性常绿阔叶林木质藤本植物对生境具有偏好性。  相似文献   

10.
Habitat fragmentation and the widespread creation of habitat edges have recently stimulated interest in assessing the effects of ecotones on biodiversity. Ecotones, natural or anthropogenic, can greatly affect faunal movement, population dynamics, species interactions, and community structure. Few data exist, however, on insect community response to forest–savanna ecotones, a natural analog to anthropogenically cleared areas adjacent to forest. In this study, the abundance, total biomass, average individual biomass, and distribution of scarabaeine dung beetles were examined at a sharp tropical evergreen forest–savanna ecotone in Santa Cruz, Bolivia. The abundance, total biomass, and average individual biomass of dung beetles varied significantly across the forest, edge, and savanna habitats. Species richness (Sobs) also varied significantly across the three habitats, but statistical estimations of true species richness (Sest) did not. Habitat specificity of the dung beetles in this study was extremely high. Of the 50 most common species collected during the study, only 2 species were collected in both the forest and savanna habitats, signaling nearly complete community turnover in just a few meters. Strong edge effects were evidenced by the decline in abundance, total biomass, and species richness at the forest‐savanna boundary.  相似文献   

11.
Spatial distributions of tree species in a subtropical forest of China   总被引:2,自引:0,他引:2  
The spatial dispersion of individuals in a species is an important pattern that is controlled by many mechanisms. In this study we analyzed spatial distributions of tree species in a large-scale (20 ha) stem-mapping plot in a species-rich subtropical forest of China. O-ring statistic was used to measure spatial patterns of species with abundance >10. Ω0–10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species. Our results showed: (1) aggregated distribution was the dominant pattern in the plot. The percentage of aggregated species decreased with increased spatial scale. (2) The percentages of significantly aggregated species decreased from abundant to intermediate and to rare species. Rare species was more strongly aggregated than common species. Aggregation was weaker in larger diameter classes. (3) Seed traits determined the spatial patterns of trees. Seed dispersal mode can influence spatial patterns of species, with species dispersed by both modes being less clumped than species dispersed by animal or wind, respectively. Considering these results, we concluded that seed dispersal limitation, self-thinning and habitat heterogeneity primarily contributed to spatial patterns and species coexistence in the forest.  相似文献   

12.
Data have been compiled on the distribution, habitat preferences and population sizes of 348 vertebrates reproducing in Sweden (excluding fish) and their species richness in different habitats and regions was investigated. Furthermore, we compared the habitat preferences and distribution of rare and common vertebrates. The relative species number (corrected for area) increases from the north (the hemiarctic/boreal zone) to the south (the temperate/hemiboreal zone). The relative number of species in major habitats is highest in farmland, lakes and running waters, and possibly also in the sea. However, the absolute number of species is highest in woodland, the dominant habitat in Sweden (56% of the land area excluding sea). Within woodlands, a large proportion of species occur in southern deciduous forests, in other deciduous forests and in mixed forests, while coniferous forests are less species-rich when the habitat area is taken into account. In farmland, the most species-rich habitats are meadows and forest edges, while marshes are the most species-rich habitats amongst lakes and running waters. Nationally rare species (<1000 individuals) have a smaller European range than common species, and they also have their European distribution centres further to the south than the common species. Of the species occurring in large parts of Sweden (that is, both in the north and the south) a low proportion (4.7%) are classified as rare compared with species occurring mainly in the north (20.6% rare) or mainly in the south (31.6% rare) of Sweden. There is a positive correlation between the number of rare species and the total species number in 41 subcategory habitats, and the proportion of rare species is similar in most habitats. A more detailed analysis (including effects of both regions and habitats) suggests that the proportion of rare species in a region is a result of differences between latitudes, but also of different habitats (when corrected for latitude effects). There are differences in the proportion of rare species between the nine most species-rich orders (for example, there is a high proportion of rare species in the order Carnivora and a low proportion in the order Rodentia), but the proportion of rare species in these orders is not independent of the habitats in which they occur, making it difficult to separate the effects of habitat preferences and taxonomy on rarity. The focusing of conservation work on relatively species-rich habitats in southern and middle Sweden — such as some farmland habitats (that is, meadows and forest edges), marshes (in connection with lakes and running waters) and forests with a relatively high proportion of deciduous trees — is of high priority if the conservation of biodiversity is a main goal. These are also the habitats with a high number of rare and red-listed species.  相似文献   

13.
The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly. However, the distribution characteristics and influencing factors of understory light availability have not been fully elucidated, especially in temperate deciduous, broad-leaved forests. In this study, the understory light availability was monitored monthly (May–October) in a temperate deciduous, broad-leaved forest in Henan Province, China. Differences in the light availability among different months and habitat types were statistically analyzed using Kruskal–Wallis method, respectively. Partial least squares path modeling (PLS-PM) was used to explore the direct and/or indirect effects of stand structure, dominant species and topographic factors on the light environment. Results showed that there were differences in light environments among the four habitat types and during the studied six months. The PLS-PM results showed that the stand structure and the dominant species were negatively correlated with the light environment, and the path coefficient values were −0.089 (P = 0.042) and −0.130 (P = 0.004), respectively. Our result indicated that the understory light availability exhibit a distinct spatial and temporal heterogeneity in temperate deciduous, broad-leaved forest of north China. The characteristics of woody plant community, especially the abundance of one of the dominant plant species, were the important factors affecting the understory light availability.  相似文献   

14.
Several experimental studies have examined species responses to manipulations of habitat area and spatial arrangement, but plant composition and spatial variation in species distributions also affect animal responses to habitat alteration. We used an experimental approach to study the combined effects of habitat area, edge, and plant community composition on the spatial structure of insect species richness and composition. The abundance of three guilds (herbivores, predators and parasitoids) and individual species were also analyzed. Habitat patches were created that differed in area and edge by selectively mowing portions of 15 m×15 m plots in a 1.7-ha old field. Spatial and environmental variables were used to predict insect responses in separate multiple regression and ordination models. The variation in species responses due to spatial and environmental variables was then partitioned by combining these variables into an overall regression or ordination. Spatial and environmental variables contributed similar percentages to the total variance in insect species richness, abundance or composition. No significant effects of habitat area were observed in any response variable. Herbivore abundance showed positive responses to legume or grass cover, as well as spatial variation that was unrelated to environmental variables. Predators and parasitoids had greater effects of plant species richness and habitat edge, and less unexplained spatial variation. Individual species differed in their responses to plant variables, depending on host specialization or intraspecific aggregation. Our study highlights the importance of plant community composition and spatial variation apart from environmental variables. Spatial variation stems both from species responses to environmental features as well as species differences in habitat specialization and intraspecific aggregation.  相似文献   

15.
Tropical butterfly conservation strategies often focus on total and/or common species richness to assess the conservation value of a patch or habitat. However, such a strategy overlooks the unique dynamics of rare species. We evaluated the species‐habitat relationships of 209 common, intermediate, and rare butterfly species (including morphospecies) across four habitat types (mature, degraded, or fragmented forest, and urban parks) and two patch sizes (<400 ha, ≥400 ha) in Singapore. Common species richness was consistent across habitat types. Intermediate species richness declined by more than 50 percent in urban parks (relative to all forest habitats), and rare species richness was reduced by 50 percent in degraded and fragmented forest and by 90 percent in urban parks (relative to mature forest). Large patches had comparable overall richness to small patches, but they supported more rare species and three times as many habitat‐restricted species over a similar area. Importantly, a number of rare species were confined to single small patches. Mixed‐effects regression models were constructed to identify habitat and ecological/life history variables associated with butterfly abundance. These models revealed that species with greater habitat specialization, rare larval host plants, few larval host plant genera, and narrow global geographic ranges were more likely to be rare species. Overall, these results demonstrate that the richness of habitat‐restricted and rare species do not follow the same spatial distribution patterns as common species. Therefore, while conserving mature forests is key, effective butterfly conservation in a transformed landscape should take into account rare and habitat‐restricted species.  相似文献   

16.
Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.  相似文献   

17.
Two 1 ha plots of a Southern Brazilian subtropical riverine forest, subject to different frequency and duration of floods, were compared to detect the differences in physiognomic structure, tree community composition, richness and diversity. Each plot was made up of 100 contiguous 10×10 m subplots, where 3451 trees with pbh 15 cm were measured and identified. The survey observed 30 tree species, in the frequently flooded plot and 48 in the occasionally flooded plot. A detailed topographical and soil survey was carried out in both plots and indicated that the levels of organic matter and most mineral nutrients were higher in the frequently flooded stand. The forest understory was denser in the occasionally flooded stand which also showed taller emergent trees. Multivariate ordination and grouping techniques showed that the species’ abundance distribution was strongly related to the topographical variation. There was a clear pattern of species turnover according to topographic position, indicating that tree species developed different abilities to survive flooding events. As a result, the two plots also differed in their tree frequency per species regeneration, vertical distribution and dispersion groups. Both species richness and diversity decreased with increasing flood frequency, also showing a patchy distribution within both stands. At a local scale, flooding regime is regulating the spatial variation of α-diversity by forming different seral stages of predictable species composition. Compared to regularly flooded riverine and floodplain forests, riverine forests, with unpredictable flooding regimes, may show higher diversity at a local scale and more abundant opportunistic species of high environmental plasticity.  相似文献   

18.
Abstract.  1. Habitat loss and fragmentation are the main causes of changes in the distribution and abundance of organisms, and are usually considered to negatively affect the abundance and species richness of organisms in a landscape. Nevertheless, habitat loss and fragmentation have often been confused, and the reported negative effects may only be the result of habitat loss alone, with habitat fragmentation having nil or even positive effects on abundance and species richness.
2. Manipulated alfalfa micro-landscapes and coccinellids (Coleoptera: Coccinellidae) are used to test the effects habitat loss (0% or 84%), fragmentation (4 or 16 fragments), and isolation (2 or 6 m between fragments) on the density, species richness, and distribution of native and exotic species of coccinellids.
3. Generally, when considering only the individuals in the remaining fragments, habitat loss had variable effects while habitat fragmentation had a positive effect on the density of two species of coccinellids and on species richness, but did not affect two other species. Isolation usually had no effect. When individuals in the whole landscape were considered, negative effects of habitat loss became apparent for most species, but the positive effects of fragmentation remained only for one species.
4. Native and exotic species of coccinellids did not segregate in the different landscapes, and strong positive associations were found most often in landscapes with higher fragmentation and isolation.
5. The opposing effects of habitat loss and fragmentation may result in a nil global effect; therefore it is important to separate their effects when studying populations in fragmented landscapes.  相似文献   

19.
Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.  相似文献   

20.
1 Relationships between microhabitat variables (altitude, inclination, topographic position, drainage, canopy height) and the distribution and abundance of palms and palm-like plants in 50 ha of old-growth terra firme rain forest in the Yasuní National Park, lowland Amazonian Ecuador, were examined using 118 20 × 20 m plots laid out in a stratified random design.
2 If microhabitat niche differentiation is important for maintaining the species richness of the community, then (i) the distribution of the palms will be strongly influenced by microhabitat heterogeneity and (ii) palms of similar growth form will show antagonistic microhabitat relationships.
3 Mantel and cluster analyses showed that palm species distributions were strongly structured by topography. The main difference in species composition was between plots in the bottomland and plots on the upper slopes and hill tops.
4 Logistic and logit analyses showed that 20 of the 31 palm and palm-like taxa analysed had distributions that were significantly related to the microhabitat variables measured, mainly to topography but also to drainage and canopy height.
5 Spatial autocorrelation in the overall community structure was not explained by the microhabitat variables. Analyses of distributions or abundances of single species showed neighbourhood effects for seven taxa.
6 Antagonistic patterns of microhabitat preferences were recognizable among some species pairs of small palms, medium-sized palms and palm-like plants, but not among canopy palms.
7 It is concluded that microhabitat specialization is an important factor in maintaining the diversity of this palm community, while mass effects might also be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号