首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
菜豆根瘤菌对土壤钾的活化作用   总被引:1,自引:0,他引:1  
张亮  黄建国  韩玉竹  吴叶宽 《生态学报》2012,32(19):6016-6022
以土壤为钾源,通过液体培养试验研究了8株菜豆根瘤菌对土壤钾的活化作用。结果表明,菜豆根瘤菌能释放大量的氢离子,使液体培养基的pH值大幅度降低,氢离子的浓度至少提高22倍以上。根瘤菌分泌有机酸的种类与数量因菌株不同而异,这些有机酸包括甲酸、乙酸、草酸、丁二酸、柠檬酸、苹果酸和乳酸等,其中全部菌株均能分泌草酸和苹果酸,大部分菌株能分泌乙酸。在接种根瘤菌的液体培养基中,可溶性钾含量显著高于不接种的液体培养基,土壤矿物结构钾则显著降低。由于土壤是培养基钾的唯一来源,故根瘤菌可促进土壤无效钾的溶解。相关分析表明,土壤矿物结构钾与有机酸分泌总量呈极显著负相关(r=-0.878**,n=9),与培养液pH值呈极显著正相关(r=0.863**,n=9),说明根瘤菌分泌的有机酸和氢离子可能溶解土壤无效钾。考虑到根瘤菌草酸分泌量大,络合钙、镁、铁、铝的能力强,且与有机酸分泌总量呈极显著正相关(r=0.870**,n=9),推测草酸分泌在活化土壤无效钾的过程中起重要作用。此外,根瘤菌分泌的有机酸电离产生的氢离子仅占培养液氢离子的4.15%—27.56%,推测根瘤菌直接分泌的氢离子可能是造成培养液pH值降低的主要原因之一。  相似文献   

2.
Seed germination and micropropagation protocols of the medicinal species Maytenus canariensis (Loes.) G. Kunkel & Sunding were optimized. In vitro seed germination occurred (86 to 94.7 %) only after treatment of the seeds with H2SO4, followed by surface sterilization and culture on solid nutrient medium without any growth regulators. Micropropagation failed when explants were taken from mature trees, and browning of the nutrient medium frequently occurred despite testing many growth media. Nonetheless, adventitious shoot regeneration was achieved employing axillary or apical buds taken from 2–2.5 months old plantlets obtained after in vitro germination of seeds, following culture on nutrient media supplemented with benzylaminopurine, kinetin and naphthalenacetic acid (NAA), attaining up to 3.9 shoots per explant, after 4–6 months. Root induction was best on a medium containing 4.0 mg dm−3 NAA, achieving a 100 % induction. After hardening of rooted plants, survival after transfer to soil was 71.43 %.  相似文献   

3.
A selective medium was developed for the dilution plate isolation of Mycoleptodiscus terrestris from natural soils and sediments from aquatic environments. The ingredients per liter of the selective medium are as follows: KH2PO4, 0.5 g; MgSO4 7H2O, 0.5 g; dextrose, 10.0 g; peptone, 5.0 g; chloramphenicol, 0.25 g; rose bengal, 50 mg; oxgall, 5.0 g; Terraclor (pentachloronitrobenzene, 75% active ingredients), 0.5 g; agar, 15.0 g. After autoclaving, the following ingredients were aseptically added: sorbic acid (0.7% autoclave-sterilized aqueous solution), 5.0 ml; Subdue (25.1% emulsion of metalaxyl), 0.5 ml; Truban (40.7% suspension of etridiazol), 0.05 ml. The colony-restrictive properties of this medium enabled its use in the drop plate method, originally developed for viable counts of bacteria. Alfalfa sprouts as baits were not suitable for quantitative recovery of the fungus, although 5% of alfalfa sprouts were infected with M. terrestris when incubated on soil containing 1.5 × 102 CFU/g.  相似文献   

4.
By generating and examining transgenic tomato overexpressing ath-miR399d grown in hydroponic conditions, in quartz sand, or in a polytunnel greenhouse vegetable soil culture, this study aimed to investigate the effects of miR399d from Arabidopsis on phosphorus (P) accumulation, P concentrations in transgenic tomato overexpressing ath-miR399d shoots, phosphate transporter expression, and proton secretion and acid phosphatase (APase) activity in roots. In the transgenic tomato, leaf P concentration increased significantly in an agricultural soil, and roots had higher uptake of P, as evidenced by leaf P concentrations and relative expression of the genes LePT1, LePT2, LePT4, and LePT5 in normal-P solution. Enhanced APase activity in transgenic roots and the outside medium led to superior hydrolysis of organic P, and increased proton extrusion by roots led to superior dissolution of AlPO4. Thus, besides phosphate transporters, higher APase activity and strengthened acidification in the vicinity of the roots may be important mechanisms for transgenic tomato to scavenge or acquire P in soil. These results provide new understanding of miR399-overexpressing plants that accumulate excess P in shoots.  相似文献   

5.
Young healthy cotyledon and leaf explants of Rhinacanthus nasutus (L.) Kurz. were incubated on Murashige and Skoog (MS) medium supplemented with 1.0–5.0 mg/l 2, 4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with 0.3–1.5 mg/l indole-3-butyric acid (IBA). The optimum callus induction (100 %) was observed from cotyledon explants on MS medium supplemented with 4 mg/l 2, 4-D and 0.5 mg/l IBA. The friable, embryogenic callus when subcultured on half strength MS medium supplemented with IBA (3.0–5.0 mg/l) produced several somatic embryos at various stages of development (globular, heart, torpedo) after 45 days of culture. The highest frequency of callus embryogenesis was observed on ½MS medium supplemented with 4.0 mg/l IBA. Moreover, 47 % of incubated callus responded with a mean number of 16.3 somatic embryos per gram callus. For germination, somatic embryos at the torpedo stage were isolated and subcultured on ½MS medium supplemented with 0.5 mg/l each of 6-benzyladenine and indole-3-acetic acid. After 45 days of culture, plantlets developed with mean lengths of 3.8 cm. Somatic embryos at the torpedo stage were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V), dropped into 100 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds. Optimum growth ability of synthetic seed was obtained on MS medium supplemented with 0.2 mg/l gibberellic acid (GA3). Well developed healthy plantlets derived from somatic embryos and synthetic seeds were hardened and successfully transplanted to soil.  相似文献   

6.
An efficient, rapid, and reproducible plant regeneration protocol was successfully developed for Abrus precatorius L. using mature nodal explants excised from a 5-year-old field grown plant. The highest shoot regeneration frequency (87 %) with maximum number of multiple shoots (15.0) and shoot length (4.8 cm) were recorded on Murashige and Skoog (MS) medium amended with 2.5 μM thidiazuron, 120 mg dm?3 polyvinylpyrrolidone, and 0.5 μM α-naphthalene acetic acid. The best treatment for maximum root (4.0) induction was half strength MS medium supplemented with 1.5 μM indole-3-butyric acid. The in vitro plantlets with well-developed shoots and roots were successfully transferred into plastic cups with Soilrite and acclimatized in a culture room under photon flux density (PFD) of 150 μmol m?2 s?1, thereafter transferred to a greenhouse with PFD of 300 μmol m?2 s?1, and finally to a field with 70 % survival rate. During the acclimatization period (0–49 d), leaf chlorophyll and carotenoid content increased whereas malondialdehyde and H2O2 content decreased probably due to increasing activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase). Our work suggests that micropropagated plants developed an antioxidant enzymatic protective system to avoid oxidative stress during establishment under ex vitro environment.  相似文献   

7.
Cyclocarya paliurus is a unique plant growing in central China with hypoglycaemic and hypolipaemia effects. To make better use of this functional food resource, cell suspension cultures and triterpenic acid accumulation were studied. Stable and uniform cell suspension cultures were established in liquid basal Murashige and Skoog medium supplemented with 2,4-dichlorophenoxy acetic acid (0.5 mg/L), naphthalene acetic acid (0.3 mg/L) and cytokinin (1.0 mg/L). According to the growth curve and triterpenic acid accumulation curve, the 8 ~ 10th day postinoculation was the optimum time for subculture, and the 14th day was the optimum time for harvest. Murashige and Skoog medium and woody plant medium were suitable for both cell growth and triterpenic acid accumulation. 3% sucrose (w/v), 60 mM total nitrogen (NO3 ?/NH4 + = 2/1), 1.25 mM KH2PO4, 2 mM CaCl2, and 2 mM MgSO4 were all found to be fit for cell growth and triterpenic acid accumulation in a cell suspension culture of Cyclocarya paliurus. Total triterpenic acid, ursolic acid and oleanolic acid content in suspended cultured cells were all significantly higher than that of leaves and calluses (P ? 0.01), with levels up to 6.24, 2.28, and 0.94% (of dry weight), respectively. The betulinic acid content of suspended cultured cells also reached 0.82%, which was significantly higher than that of calluses. These results suggest that suspended cultured cells of Cyclocarya paliurus were rich in triterpenic acids and could be used for the production of total triterpenic acid, ursolic acid, oleanolic acid and betulinic acid.  相似文献   

8.
A novel laccase (LACB3) from the endophytic fungus, Phomopsis liquidambari, was cloned and its potential to promote peanut growth was evaluated. The full-length cDNA is 1,731 bp, encoding a mature protein of 556 amino acids with a molecular mass of 60.1 kDa. Using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate), LACB3 exhibited a K m and k cat of 85 μM and 92.7 s?1, respectively. The enzyme had maximal activity at pH 2.5 and 50 °C and retained 50 % of its activity after 20 h at 50 °C. When LACB3 was applied to soil, the peanut biomass was increased by 12 %, and the content of vanillic acid, coumaric acid and 4-hydroxybenzoic acid in soil were decreased by 21, 27 and 40 %, respectively. These results suggest substantial potential for the use of P. liquidambari or its laccase in agriculture.  相似文献   

9.
An efficient protocol was developed for short-term storage and conservation of a woody medicinal climber, Decalepis hamiltonii, using encapsulated nodal segments. The encapsulation of nodal segments was significantly affected by the concentrations of sodium alginate (Na-alginate) and calcium chloride (CaCl2·2H2O). A gelling matrix of 4?% Na-alginate and 100?mM CaCl2·2H2O was found most suitable for the production of ideal Ca-alginate beads. Maximum shoot re-growth (77.00?±?2.09?%) was recorded on Murashige and Skoog (MS) basal medium supplemented with 5.0???M 6-benzyladenine (BA), 0.5???M indole-3-acetic acid (IAA) and 30.0???M adenine-sulphate (ADS). Microshoots, recovered from encapsulated nodal segments (capsule) were best rooted on half-strength MS medium containing 2.5???M ??-naphthalene acetic acid (NAA). Complete plantlets (with shoot and root) were successfully acclimatized and established in field where they grew well without any detectable variation.  相似文献   

10.
Metarhizium anisopliae is an imperfect entomopathogenic fungus. Once invading into its host,M. anisopliae needs to absorb basic nutrients such as phosphorus from the host haemolymph. A large number of phosphorylated compounds in haemolymph cannot be directly utilised by the fungal cell and must be hydrolysed into available form by phosphatase before ingested. Aims of this paper were to investigate optimum fermentation conditions for production of acid phosphatase and phosphatase isoenzymes byMetarhizium anisopliae. The optimum fermentation conditions were: glucose, 20 g/l; (NH4)2SO4, 2 g/l; casein, 4 g/l; MgSO4, 0.5 g; KCl, 0.5 g; microelement salt solution, 10 ml; inoculum size, 1×107 spores per 100 ml medium; initial medium pH, 6.0. Under these conditions, the highest total acid phosphatase activity was 3.05 U/ml in 4 days at 27 °C and 160 rpm. Synthesis of the acid phosphatase was repressed by 0.01% inorganic phosphate in culture medium. The spectrum of isoenzymes produced byM. anisopliae varied depending on the phosphorus source employed in the culture. A specific isoform with pI 9.45 was induced by casein, and another isoform of pI 8.21 was induced by phytic acid and disodium phenyl phosphate.  相似文献   

11.
The lipase produced by the Aspergillus niger strain AC-54 has been widely studied due to its enantioselectivity for racemic mixtures. This study aimed to optimize the production of this enzyme using statistical methodology. Initially a Plackett-Burman (PB) design was used to evaluate the effects of the culture medium components and the culture conditions. Twelve factors were screened: water content, glucose, yeast extract, peptone, olive oil, temperature, NaH2P04, KH2P04, MgS04-7H20, CaCl2, NaCI, and MnS04. The screening showed that the significant factors were water content, glucose, yeast extract, peptone, NaH2P04, and KH2P04, which were optimized using response surface methodology (RSM) and a mathematical model obtained to explain the behavioral process. The best lipase activity was attained using the following conditions: water content (20%), glucose (4.8%), yeast extract (4.0%), and NaH2P04 (4.0%). The predicted lipase activity was 33.03 U/ml and the experimental data confirmed the validity of the model. The enzymatic activity was expressed as μmoles of oleic acid released per minute of reaction (μmol/min).  相似文献   

12.
For Salmonella, transient exposure to gastric pH prepares invading bacteria for the stresses of host-cell interactions. To resist the effects of low pH, wild-type Salmonella enterica uses the acid tolerance response and the arginine decarboxylase acid resistance system. However, arginine decarboxylase is typically repressed under routine culture conditions, and for many live attenuated Salmonella vaccine strains, the acid tolerance response is unable to provide the necessary protection. The objective of this study was to enhance survival of Salmonella enterica serovar Typhi vaccine strains at pHs 3.0 and 2.5 to compensate for the defects in the acid tolerance response imposed by mutations in rpoS, phoPQ, and fur. We placed the arginine decarboxylase system (adiA and adiC) under the control of the ParaBAD or PrhaBAD promoter to provide inducible acid resistance when cells are grown under routine culture conditions. The rhamnose-regulated promoter PrhaBAD was less sensitive to the presence of its cognate sugar than the arabinose-regulated promoter ParaBAD and provided tighter control over adiA expression. Increased survival at low pH was only observed when adiA and adiC were coregulated by rhamnose and depended on the presence of rhamnose in the culture medium and arginine in the challenge medium. Rhamnose-regulated acid resistance significantly improved the survival of ΔaroD and ΔphoPQ mutants at pHs 3 and 2.5 but only modestly improved the survival of a fur mutant. The construction of the rhamnose-regulated arginine decarboxylase system allowed us to render S. Typhi acid resistant (to pH 2.5) on demand, with survival levels approximately equivalent to that of the native arginine decarboxylase system.  相似文献   

13.
Cultural conditions were examined for the purpose of increasing yields of l-malic acid by the Basidiomycetes Schizophyllum commune and Merulius tremellosus, which have the ability to produce this acid as a main product in CaCO3-containing medium in shaken culture. The most favorable nitrogen sources selected were 0.3% (NH4)2SO4 and 0.18% NH4Cl. Effective combinations of inorganic salts in the medium were 0.1% KH2PO4, 0.05% MgSO4·7H2O, and 0.05% KCl, and suitable concentrations of glucose were 5 to 10%. Several nonionic surface-active agents promoted the filamentous mycelial growth of these strains and increased acid production. In particular, Tween 80 in 0.3% concentration markedly stimulated malic acid production by S. commune, and yields greater than 50% based on available glucose, were obtained after 10 to 14 days. Acid production by M. tremellosus was stimulated most with 0.5% Carbowax 4000 (polyethylene glycol), and the resultant yields were more than 40%.  相似文献   

14.
The use of phosphate-solubilizing fungi is a promising biotechnological strategy in the management of phosphorus (P) fertilization, as it enables the utilization of rock phosphates (RP) or the recovery of P fixed in soil particles. The objective of our study was to evaluate fungal isolates for mechanisms of solubilization of P-bearing compounds, such as AlPO4, FePO4, Ca3(PO4)2, Araxá RP, and Catalão RP. Four fungal isolates obtained from Brazilian soils were characterized in liquid media: Aspergillus niger FS1, Penicillium canescens FS23, Eupenicillium ludwigii FS27, and Penicillium islandicum FS30. A. niger FS1 was the only isolate able to solubilize all of the P sources, solubilizing 71, 36, 100, and 14 % of the P from AlPO4, FePO4, Ca3(PO4)2, and RPs, respectively. Medium acidification was an effective solubilization mechanism, particularly for Ca3(PO4)2. The other P sources were mainly solubilized through organic acids produced by the fungi. Oxalic acid, produced exclusively by A. niger FS1, and citric acid were decisive factors in the solubilization of AlPO4 and FePO4. Penicillium isolates produced more gluconic acid than A. niger FS1 in all treatments. However, this higher production did not result in higher solubilization for any of the P sources, showing that gluconic acid contributes little to the solubilization of the P sources evaluated. The higher capacity of medium acidification and the production of organic acids with stronger metal-complexation activity are characteristics that confer to A. niger FS1 a wider action on insoluble P sources. Consequently, this isolate qualifies as a promising candidate for application in the management of P fertilization.  相似文献   

15.
Plant-soil interactions result in a special rhizosphere soil chemistry, differing from that of the bulk soil found only a few mm from the root. The aim of this study was to investigate adaptation mechanisms of herbs growing in acid soils through studying their rhizosphere chemistry in a greenhouse experiment and in a field study. Ten herbs were grown in acid soil (pH 4.2 in the soil solution) in the greenhouse. The concentrations of NO3 -, SO4 2-, phosphates, Ca2+, Mg2+, Mn2+, K+, Na+, NH4 + and pH were analysed in soil solutions obtained by centrifugation. The general pattern found was a depletion of nutrients in the rhizosphere compared with their concentrations in the bulk soil. The pH increase (up to 0.7 units) in the rhizosphere soil appeared to be caused by plant uptake of NO3 - (r2=0.88). The ion concentrations in the soil solution of the rhizosphere were dependent on plant species and biomass increase. Although species with a larger biomass and higher growth rates showed a higher degree of ion depletion (except for Na+, SO4 2-) in the rhizosphere, there were also species specific responses. A field study of five herbs at five oak forest sites in Southern Sweden (Scania) was also carried out. In addition to the soil solution concentrations, the loss on ignition (LOI) and the concentrations of 0.1 M BaCl2 extractable K+, Mg2+, Mn2+, Ca2+, and Al ions were measured. The amount of soil solution Al was determined as free ionic (quickly reacting) Al. For all species and sites, the LOI and the concentrations of exchangeable cations were higher in the rhizosphere than in the bulk soil, apparently due to the roots preferably growing at organic-rich microsites. The concentrations of the ions as measured in the centrifuged soil solution, were either higher in the rhizosphere than in the bulk soil or were the same in both, except for NO3 - and quickly reacting Al. The lower concentrations of quickly reacting Al in the rhizosphere, compared with the bulk soil could indicate the uptake of Al by the plant or the exudation of complexing substances. The pH differences were only small and mostly non-significant. Plant-soil interactions and the ability of plants to utilise heterogeneity of the soil appear to be more important for plant growth in acid soils than recognised heretofore. Rhizosphere studies provide an important means of understanding plant strategies in acid soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   

17.
An inducible enzyme catalysing the hydrolysis of (+)-usnic acid to (+)-2-desacetylusnic acid and acetic acid has been purified 150-fold from the mycelium of Mortierella isabellina grown in the presence of (+)-usnic acid. Purification was achieved by treatment with protamine sulfate, (NH4)2SO4 fractionation, negative adsorption on alumina Cγ gel and hydroxylapatite followed by chromatography on DEAE-cellulose and Sephadex G-200. The elution pattern from a Sephadex G-200 column indicated a MW of ca 7.6 × 104 for the enzyme. The apparent Km value for (+)-usnic acid at the pH optimum (pH 7) was 4.0 × 10?5 M. The enzyme was specific for (+)-usnic acid and inactive towards (?)-usnic acid, (+)-isousnic acid or certain phloracetophenone derivatives. Its activity was enhanced in the presence of divalent metal ions such as Co2+, Ni2+, Mn2+, Mg2+ and Zn2+.  相似文献   

18.
To evaluate how native soil microorganism and nutrients interact in a bioaugmented or biostimulated calcification process, batch experiments were conducted in saturated soil extract either amended with Bacillus pasteurii and/or NB-NH4Cl media (nutrient broth, 3.0 g/L; NH4Cl, 10.0 g/L; NaHCO3, 2.12 g/L). The NB-NH4Cl medium was chosen out of three potential candidates, where B. pasteurii precipitated the maximum amount of calcium (>95 %) as calcite in 12 h of incubation. The addition of B. pasteurii into saturated soil extract marginally improved the calcification to 4.26 % compared to the unamended control (3.2 %). Calcification with B. pasteurii in autoclaved soil extract was even better (18.75 %). However, the addition of the NB-NH4Cl medium into the soil extract could significantly improve the calcification irrespective of whether B. pasteurii was added (88.46 %) or not (77.04 %). It suggests that soil microbial activity was not limiting even though soil nutrient was inadequate. It also indicates a possible negative interaction between soil microorganisms and B. pasteurii under nutrient-limited conditions.  相似文献   

19.
The effect of natural and artificial reduction on P extractability from soils used for rice production and the relation of these values to response to fertilizer P were investigated. Soil solution P increased from a mean of 3.8 mg P·kg?1 soil for naturally oxidized slurries of 28 soils to 19.8mg P·kg?1 when the soils were naturally reduced. The mean values were further increased to 40.8 and 45.3 mg·kg?1 when the soils were reduced with 0.1M Na2S2O4 and 0.2M Na2S2O4, respectively. These P-values compare with 18.2 mg kg?1 when the dry soils were extracted with Bray No. 1 extractant. When the yields of rice were correlated with solution and extracted P, the R2's for the quadratic relationships were 0.40**, 0.31*, 0.34**, 0.30*, and 0.55** for the naturally oxidized, the naturally reduced, 0.1M Na2S2O4, 0.2M Na2S2O4 and Bray No. 1, respectively. The Cate-Nelson calculation confirmed the superiority of the weak acid Bray extractant and the critical value of 8.6 mg P·kg?1 soil needed for satisfactory yields of rice. There was little response of rice to added fertilizer P on soils with solution P-values greater than 0.09 mg P·l?1 in oxygenated soil slurries. Some soils with solution P of this order and high amounts of Bray No. 1 extractable P still gave modest responses to fertilizer P. Although natural or chemically induced reduction increased soil solution P, it did not improve prediction of yield response of rice to added fertilizer P.  相似文献   

20.
An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0–12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号