首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linkage region between core and the O-chain of the lipopolysaccharide from Bordetella hinzii has been analyzed by NMR and MS analysis of the products, obtained by anhydrous HF treatment or consecutive ammonia and AcOH treatment of the LPS. The following structure of this region was deduced from the experimental results: [structure: see text] This structure is identical to the structure of the respective region of Bordetella parapertussis LPS. Polysaccharide part (PS) consists of not more than 15 2,3-diacetamido-2,3-dideoxyhexuronamides, methylated at the only hydroxyl group of the non-reducing terminal monosaccharide.  相似文献   

2.
Surfactant protein A (SP-A) plays an important role in the innate immune defense of the respiratory tract. SP-A binds to lipid A of bacterial LPS, induces aggregation, destabilizes bacterial membranes, and promotes phagocytosis by neutrophils and macrophages. In this study, SP-A interaction with wild-type and mutant LPS of Bordetella pertussis, the causative agent of whooping cough, was examined. B. pertussis LPS has a branched core structure with a nonrepeating trisaccharide, rather than a long-chain repeating O-Ag. SP-A did not bind, aggregate, nor permeabilize wild-type B. pertussis. LPS mutants lacking even one of the sugars in the terminal trisaccharide were bound and aggregated by SP-A. SP-A enhanced phagocytosis by human monocytes of LPS mutants that were able to bind SP-A, but not wild-type bacteria. SP-A enhanced phagocytosis by human neutrophils of LPS-mutant strains, but only in the absence of functional adenylate cyclase toxin, a B. pertussis toxin that has been shown to depress neutrophil activity. We conclude that the LPS of wild-type B. pertussis shields the bacteria from SP-A-mediated clearance, possibly by sterically limiting access to the lipid A region.  相似文献   

3.
A DNA locus from Bordetella pertussis capable of reconstituting lipopolysaccharide (LPS) O-antigen biosynthesis in Salmonella typhimurium SL3789 (rfaF511) has been isolated, by using selection with the antibiotic novobiocin. DNA within the locus encodes a protein with amino acid sequence similarity to heptosyltransferase II, encoded by waaF (previously rfaF) in other gram-negative bacteria. Mutation of this gene in B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica by allelic exchange generated bacteria with deep rough LPS phenotypes consistent with the proposed function of the gene as an inner core heptosyltransferase. These are the first LPS mutants generated in B. parapertussis and B. bronchiseptica and the first deep rough mutants of any of the bordetellae.  相似文献   

4.
The structures of the polysaccharide chains of the LPS from Bordetella bronchiseptica strains 110H and Bp512 were analysed by NMR spectroscopy and mass spectrometry. The polysaccharides consist of alpha-(1-4)-linked 2,3-diacetamido-2,3-dideoxy-L-galacturonic acid repeating units. Polysaccharides from both strains have 2,3, 4-triamino-2,3,4-trideoxy-alpha-galacturonamide derivatives at their nonreducing ends, a monosaccharide identified for the first time in nature. The polymers from the two strains differ in the nature of the acylation of the amino groups of this monosaccharide. In the strain 110H, the residue is formylated at positions 3 and 4, and has N-formyl-L-alanyl or L-alanyl substituents at N-2. In the strain Bp512, the amino group at position 2 is acetylated, at position 3 it is formylated, and the amino group at position 4 bears a 2-methoxypropionyl substituent. The distribution of the acyl groups was determined from long range 1H-13C correlation (HMBC) NMR spectra. Measurement of the spectra under different pH conditions showed that carboxyl groups of the inner uronic acid residues of the polymeric chain are free, and that carboxyl groups of the terminal residues are amidated. These conclusions were confirmed by the results of mass spectrometric analysis.  相似文献   

5.
The O chain polysaccharide (O PS) of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharide is a homopolymer of 2,3-diacetamido-2,3-dideoxygalacturonic acid (GalNAc3NAcA) in which some of the sugars are present as uronamides. The terminal residue contains several unusual modifications. To date, two types of modification have been characterized, and a survey of numerous strains demonstrated that each contained one of these two modification types. Host antibody responses against the O PS are directed against the terminal residue modifications, and there is little cross-reactivity between the two types. This suggests that Bordetella O PS modifications represent a means of antigenic variation. Here we report the characterization of the O PS of B. bronchiseptica strain MO149. It consists of a novel two-sugar repeating unit and a novel terminal residue modification, with the structure Me-4-α-l-GalNAc3NAcA-(4-β-d-GlcNAc3NAcA-4-α-l-GalNAc3NAcA-)5–6-, which we propose be defined as the B. bronchiseptica O3 PS. We show that the O3 PS is very poorly immunogenic and that the MO149 strain contains a novel wbm (O PS biosynthesis) locus. Thus, there is greater diversity among Bordetella O PSs than previously recognized, which is likely to be a result of selection pressure from host immunity. We also determine experimentally, for the first time, the absolute configuration of the diacetimido-uronic acid sugars in Bordetella O PS.  相似文献   

6.
7.
The O-polysaccharide of the lipopolysaccharide (LPS) of Proteus vulgaris TG 155 was found to contain 2-acetamido-2,6-dideoxy-L-mannose (N-acetyl-L-rhamnosamine, L-RhaNAc), a monosaccharide that occurs rarely in Nature. The following structure of the O-polysaccharide was established by NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H,13C HSQC experiments, along with chemical methods: [carbohydrate structure in text] Rabbit polyclonal O-antiserum against P. vulgaris TG 155 reacted with both core and O-polysaccharide moieties of the homologous LPS but showed no cross-reactivity with other LPS from the complete set of serologically different Proteus strains. Based on the unique O-polysaccharide structure and the serological data, we propose classifying P. vulgaris TG 155 into a new, separate Proteus O-serogroup, O55.  相似文献   

8.
Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.  相似文献   

9.
The lipopolysaccharides (LPS) of Proteus penneri 28 and Proteus vulgaris O31 (PrK 55/57) were degraded with dilute acetic acid and structurally identical high-molecular-mass O-polysaccharides were isolated by gel-permeation chromatography. Sugar analysis and nuclear magnetic resonance (NMR) spectroscopic studies showed that both polysaccharides contain D-GlcNAc, 2-acetamido-2,6-dideoxy-L-glucose (L-2-acetamido-2,6-dideoxyglucose (N-acetylquinovosamine)) and 2-acetamido-3-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (N-acetylisomuramic acid) and have the following structure: [carbohydrate structure: see text] where (S)-1-carboxyethyl [a residue of (S)-lactic acid] (S-Lac) is an ether-linked residue of (S)-lactic acid. The O-polysaccharide studied is structurally similar to that of P. penneri 26, which differs only in the absence of S-Lac from the GlcNAc residue. Based on the O-polysaccharide structures and serological data of the LPS, it was suggested classifying these strains in one Proteus serogroup, O31, as two subgroups: O(31a), 31b for P. penneri 28 and P. vulgaris PrK 55/57 and O31a for P. penneri 26. A serological relatedness of the LPS of Proteus O(31a), 31b and P. penneri 62 was revealed and substantiated by sharing epitope O31b, which is associated with N-acetylisomuramic acid. It was suggested that a cross-reactivity of P. penneri 28 O-antiserum with the LPS of several other P. penneri strains is due to a common epitope(s) on the LPS core.  相似文献   

10.
A total of 43 strains of bacterial genus Bordetella was studied as to the possible extracellular enzyme production responsible for Al-immunoglobulin cleavage. This was observed to be cleaved by 9 of 21 controlled strains of B. pertussis, one of 15 strains of B. parapertussis, and one of 7 strains of B. bronchiseptica. No cleavage of G and M human immunoglobulin classes by protease positive strains of B. pertussis was evaluated. The immunochemical method altogether with polyacrylamide gel electrophoresis (PGE) with sodium dodecyl sulphate (SDS) were used to assess the IgA1 cleavage products bordetella and several compounds belonging to the heavy chain fragments were revealed. The obtained data allowed us to make a presumption that the cleavage sites of peptide chain for bordetella and meningococcal proteases were different ones.  相似文献   

11.
A V Franco  D Liu    P R Reeves 《Journal of bacteriology》1996,178(7):1903-1907
The modal distribution of O-antigen chain length is determined by the Wzz (Cld/Rol) protein in those cases in which it has been studied. The system of O-antigen synthesis in Escherichia coli serotypes O8 and O9 is different from that reported for most other bacteria, and chain length distribution is thought not to be determined by a Wzz protein. We report the existence in E. coli O8 and O9 strains of wzz genes which are very similar to and have sequences within the range of variation of those which determine the chain length of typical O antigens. We also find that wzz genes previously identified by their effect on O-antigen chain length, when cloned and transferred to O8 and O9 strains, affect the chain length of a capsule-related form of LPS, K(LPS). We conclude that in at least some O8 and O9 strains there is a wzz gene which controls the chain length of K(LPS) but has no effect on the O8 or O9 antigen.  相似文献   

12.
Bordetella pertussis lipopolysaccharide (LPS) is biologically active, being both toxic and immunogenic. Using transposon mutagenesis we have identified a genetic locus required for the biosynthesis of LPS in B. pertussis, which has been cloned and sequenced. We have also identified equivalent loci in Bordetella bronchiseptica and Bordetella parapertussis and cloned part of it from B. parapertussis. The amino acid sequences derived from most of the genes present in the sequenced B. pertussis locus are similar to proteins required for the biosynthesis of LPS and other complex polysaccharides from a variety of bacteria. The genes are in a unique arrangement in the locus. Several of the genes identified are similar to genes previously shown to play specific roles in LPS O-antigen biosynthesis. In particular, the amino acid sequence derived from one of the genes is similar to the enzyme encoded by rfbP from Salmonella enterica, which catalyses the transfer of galactose to the undecaprenol phosphate antigen carrier lipid as the first step in building oligosaccharide O-antigen units, which are subsequently assembled to form polymerized O-antigen structures. Defined mutation of this gene in the B. pertussis chromosome results in the inability to express band A LPS, possibly suggesting that the trisaccharide comprising band A is a single O-antigen-like structure and that B. pertussis LPS is similar to semi-rough LPS seen in some mutants of enteric bacteria.  相似文献   

13.
Phase I cells of Bordetella pertussis but not those of B. parapertussis, B. bronchiseptica or B. avium were agglutinated by Limulus polyphemus lectin. Most strains of B. pertussis but not those of the other species were also agglutinated by Helix pomatia lectin. In precipitation reactions between lectins and purified Bordetella lipopolysaccharide (LPS) preparations a similar pattern occurred. Lectin agglutination provides a rapid presumptive method for the differentiation of B. pertussis from B. parapertussis and other Bordetella species.  相似文献   

14.
Comparison of lipopolysaccharides (LPS) from phase variants of different strains of Bordetella phase variants of different strains of Bordetella pertussis has shown a difference in their composition, antigenicity and reactogenicity. Phase I variants of B. pertussis, with the exception of strain 134, contain a preponderance of LPS I whereas the major component of LPS of phase IV variants is LPS II. Sera raised to LPSs of phase I strains, other than 134, cross-react with each other but not with phase IV LPSs; and similarly all sera raised to phase IV LPSs cross-react with each other and with LPS from 134 phase I. The LPSs of all phase I variants, including that of 134, are approximately ten-fold or more reactive in the limulus amoebocyte lysate assay (LAL) than phase IV LPSs. In the human mononuclear cell pyrogen assay phase IV LPSs also stimulated a lower response than phase I LPSs. The B. pertussis phase I LPSs are 10-times more reactive than Escherichia coli standard endotoxin in the LAL assay but 100-times less reactive than E. coli LPS in the monocyte test for pyrogen. The SDS-PAGE profiles of B. pertussis LPSs are quite different from those of B. parapertussis and B. bronchiseptica strains. B. pertussis LPSs produced a typical lipo-oligosaccharide (LOS) pattern. B. bronchiseptica LPS produced a similar pattern but was antigenically distinct from B. pertussis LPSs I and II. B. parapertussis in contrast produced a ladder pattern typical of smooth type LPS.  相似文献   

15.
Pseudomonas aeruginosa and Bordetella pertussis produce lipopolysaccharide (LPS) that contains 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (D-ManNAc3NAcA). A five-enzyme biosynthetic pathway that requires WbpA, WbpB, WbpE, WbpD, and WbpI has been proposed for the production of this sugar in P. aeruginosa, based on analysis of genes present in the B-band LPS biosynthesis cluster. In the analogous B. pertussis cluster, homologs of wbpB to wbpI were present, but a putative dehydrogenase gene was missing; therefore, the biosynthetic mechanism for UDP-D-ManNAc3NAcA was unclear. Nonpolar knockout mutants of each P. aeruginosa gene were constructed. Complementation analysis of the mutants demonstrated that B-band LPS production was restored to P. aeruginosa knockout mutants when the relevant B. pertussis genes were supplied in trans. Thus, the genes that encode the putative oxidase, transaminase, N-acetyltransferase, and epimerase enzymes in B. pertussis are functional homologs of those in P. aeruginosa. Two candidate dehydrogenase genes were located by searching the B. pertussis genome; these have 80% identity to P. aeruginosa wbpO (serotype O6) and 32% identity to wbpA (serotype O5). These genes, wbpO(1629) and wbpO(3150), were shown to complement a wbpA knockout of P. aeruginosa. Capillary electrophoresis was used to characterize the enzymatic activities of purified WbpO(1629) and WbpO(3150), and mass spectrometry analysis confirmed that the two enzymes are dehydrogenases capable of converting UDP-D-GlcNAc, UDP-D-GalNAc, to a lesser extent, and UDP-D-Glc, to a much lesser extent. Together, these results suggest that B. pertussis produces UDP-D-ManNAc3NAcA through the same pathway proposed for P. aeruginosa, despite differences in the genomic context of the genes involved.  相似文献   

16.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

17.
The formation of complete cell wall core lipopolysaccharide (LPS) and O-antigenic side chains after addition of d-galactose to the uridine diphosphate-galactose-4-epimeraseless mutant, Salmonella typhimurium LT2-M1, has been studied by (i) determination of adsorption rates of smooth and rough specific bacteriophages, (ii) passive hemagglutination inhibition, and (iii) qualitative and quantitative determination of the polysaccharide composition and structure. A rapid synthesis of the complete core LPS and O side chains occurred in bacteria in the log phase and the early stationary phase. Phage C21, which attaches to unsubstituted Rc structures, was adsorbed by the bacteria for only 10 min after the addition of d-galactose. Unsubstituted Rc structures, however, could still be detected after 160 min by immunological and chemical assays. Attachment of the P22 phage, which requires O-specific side chains with more than one repeating unit for adsorption, was demonstrated 10 min after the addition of d-galactose. Attachment of the Felix O-1 phage, which requires a complete core, was observed between 20 and 80 min after the addition of d-galactose. The rough specific phages 6SR and Br2 did not adsorb to the bacteria at any time after the addition of d-galactose. By passive hemagglutination inhibition, the presence of O-specific structures could be demonstrated after 10 min. No antigenic activity of the Ra and Rb structures was observed in the LPS preparations isolated at any time after the addition of d-galactose. Methylation analysis of LPS preparations isolated at 10 and 160 min after the addition of d-galactose showed that the O-specific side chains contained an average of 11 and 15 repeating units, respectively. In the 10-min sample, every 25th "Rc structure" carried a side chain, compared to every 3rd residue in the 160-min sample.  相似文献   

18.
For the first time Bordetella pertussis bacteriophage was isolated, and its presence was confirmed by electron microscopy and by agar layer titration. The lysogenic strains were activated by their treatment with mitomycin C in a dose of 4.5 mg/ml. The phage system of the Bordetella genus, heretofore unknown, has been revealed: Bordetella pertussis phage lyzed all the tested strains of Bordetella parapertussis (25 strains) and could be passaged in these strains. The phage formed turbid and transparent negative colonies 0.1 mm and 0.15 mm in size. The phage titer (e. g., in strain No. 3865) was 1 X 10(10). The lysogenic variants of Bordetella pertussis, capable of spontaneous release of the phage, were obtained. These variants were characterized by changes in some of their phenotypical properties, e.g., the increased content of certain toxic substances and increased virulence.  相似文献   

19.
Low-Mr lipopolysaccharides (LPS) of Campylobacter jejuni reference strains for serotypes O:1, O:4, O:23, and O:36 were examined through the liberation of core oligosaccharides by mild acid cleavage of the ketosidic linkage of 3-deoxy-D-manno-2-octulosonic acid residues to the lipid A moiety. The liberated oligosaccharides were examined for chemical structure by compositional analysis and methylated linkage analysis in conjunction with fast atom bombardment-mass spectrometry of permethylated oligosaccharide derivatives. The results showed (i) that the LPS contained short oligosaccharide chains of branched nonrepetitive structure, to many of which N-acetylneuraminic acid residues remained attached by 2----3 linkages to 4-linked D-galactose residues in the core structure; (ii) that serotypical differences, which are not readily defined through qualitatively similar compositions, are clearly reflected in variations in linkage types and sequences of sugar residues in the outer core attached to an inner region of invariable structure; but (iii) that the presence or absence of NeuAc residues does not appear to be a basis for serotypical differences. The results also showed that oligosaccharide chains from LPS of serotypes O:1 and O:4 are distinctly different and are distinct again from those of the cross-reacting serotypes O:23 and O:36, between whose core oligosaccharide chains no differences were found. It is concluded that the structurally variable low-Mr LPS from C. jejuni show greater similarities to the lipooligosaccharides from Neisseria spp. than to the highly conserved core regions of Salmonella species. Those strains (serotypes O:23 and O:36) which also furnish high-Mr LPS are unique among gram-negative bacteria in possessing both low-Mr molecules of the Neisseria lipooligosaccharide type and high-Mr LPS of the Salmonella smooth type.  相似文献   

20.
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号