首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
从纳米抗体的研究进展,双特异性纳米抗体在感染类疾病、肿瘤以及免疫系统疾病治疗领域的研究成果、研究热点及发展前景等方面综述了双特异性纳米抗体的研究进展并分析了未来可能的发展方向.首先比较了纳米抗体与全长单克隆抗体之间的差异并阐述了双特异性纳米抗体具备的独特优势;继而概括了双特异性纳米抗体的发展历程,并对新冠病毒的中和性抗...  相似文献   

2.
单克隆抗体具有特异性结合抗原的能力,已被广泛应用于疾病诊断及治疗领域.但因单克隆抗体的组织渗透能力较差、体内的保留时间较长以及制备过程繁琐,从而限制了其在临床中的应用.自1993年首次报道在骆驼体内天然存在的单链抗体(HCAb)以来,由于其可变区间VHH(纳米抗体)具有体积小、溶解度高、特异性强以及可在细菌中大量表达等优点,较之传统单克隆抗体,VHH在疾病的诊断治疗及药物开发等医学领域具有更广阔的应用前景.本文综述了:纳米抗体的骨架区及互补决定区与传统抗体重链相应区间的结构比较;纳米抗体库的构建以及运用噬菌体展示技术对VHH库的筛选;纳米抗体技术在疾病诊断中的应用及其用于分子显像的优势,以及纳米抗体作为抗肿瘤免疫偶联物的靶向组分在癌症治疗领域中的最新进展.  相似文献   

3.
量子点是一种半导体纳米晶体,它可发出激发荧光,具有亮度高、稳定时间长和发射光谱可调节等特性,是同时检测多信号的良好材料.这些独特性质使得它们在肿瘤诊治领域中的应用日益受到人们的重视.对量子点进行功能化修饰,如偶联抗体等活性物质后,可以对肿瘤细胞进行特异性识别及示踪,以实现对肿瘤的诊断和治疗.文中分别从分子靶向识别、淋巴结定位和药物传递等方面探讨了功能化量子点在肿瘤诊断和治疗中的最新进展.此外,还讨论了量子点的毒性以及用于肿瘤检测和治疗的多功能量子点的设计方法,并提出了其实际应用的潜在方向.  相似文献   

4.
纳米生物条形码技术是一种新型的分子诊断技术,在核酸和蛋白质检测领域已经分别达到和超过现今的检测灵敏度.该技术采用纳米颗粒修饰的核酸或抗体对靶分子进行识别,并利用磁场将其分离,操作简单,不依赖酶反应,具有广泛的应用前景.该技术在病毒DNA、癌症的指标蛋白质等方面的应用已有文献报道,并有望成为一种常规的分子诊断工具.  相似文献   

5.
《生物工程学报》2022,38(6):2055-2060
本期导读主题:基因诊断技术、抗新冠抗体药物、高通量药物筛选技术、纳米抗体、多组学肿瘤药物敏感性预测、植物质体转基因技术、肠道微生物与疾病。以基因工程为基础、细胞工程为导向的现代生物技术在医药领域的广泛应用,被称之为现代医药生物技术。现代医药生物技术在疾病的诊断、预防和治疗及生物技术药物的研发中的应用,促进了诸如传染病、恶性肿瘤、心脑血管疾病等重大疾病在诊断、预防、治疗上的技术革命,已成长为现代工业的支柱产业之一的生物医药产业,服务于人类的健康事业。  相似文献   

6.
纳米抗体(Nanobody,Nb)是一种具有相对分子质量小、稳定性好、可溶性强、抗原结合性能好和免疫原性低等特点的新型抗体。目前纳米抗体在基础研究、新药开发、疾病治疗等领域已成为重要的研究热点,具广阔的应用前景。本文主要就纳米抗体在癌症治疗上的最新研究进展进行阐述。它不仅可做为拮抗药,还能关联效应器,并入载药系统,应用于放射性治疗与光动力疗法。与常规抗体相比,由于其在结构的特殊性,在癌症治疗上具有更大的优势,用途更广。  相似文献   

7.
骆驼血液中存在天然缺失轻链的重链抗体,克隆该重链抗体的可变区得到最小的抗原结合片段,即纳米抗体(Nanobody,Nb)。Nb的单域性质使其较普通抗体具有一些独特性能,比如高度水溶性和构象稳定性,较强的抗原亲合力和优良的组织穿透能力,容易体外表达和人源化改造修饰等,Nb的以上持性使其在诊断检测领域展现出广阔的应用前景。尽管Nb的应用开发已经取得前所未有的成功,技术上仍然有待进一步优化,其中包括噬菌体纳米抗体库构建以及Nb的胶体金标记分析等技术。文中简单介绍Nb的研究进展,并从Nb制备、在疾病的体外检测以及体内肿瘤无创伤影像诊断领域的应用3个方面,讨论进一步提高Nb亲合力和人源化改造等优化Nb分子特征的策略,分析Nb在疾病检测诊断应用中存在的问题,并提出一些积极的应对方案。  相似文献   

8.
抗体是分子识别领域应用最广的一类分子,在临床治疗和诊断方面均发挥了巨大的作用,随着配体指数增强系统进化技术(SELEX)的发展,已经可能筛选出针对任何靶分子以高特异性、高亲和力结合的适配分子,在治疗和诊断的分子识别领域,它已经成为能够和抗体竞争的一类分子。  相似文献   

9.
传染病是一种由致病性微生物引起,能够影响人类身体健康甚至引发严重社会危机的传播性疾病。近年来,新冠、埃博拉等传染病的恶性暴发促使人们寻找更为高效便捷的防治手段以遏制疾病的进程。抗体在传染病防治中的应用引起了广泛关注,palivizumab是目前唯一被批准应用于呼吸道合胞病毒在免疫力低下人群的预防的单克隆抗体。纳米抗体(nano-antibody, Nb)是目前已知的能与抗原稳定结合的最小功能性单域抗体,具有稳定性高、亲水性强、易于表达和改造等优势。独特的分子特性使其在病毒、细菌、寄生虫等引发的传染病的预防、诊断和治疗中展现出良好的应用前景,相关研究显示纳米抗体对艾滋、流感、新型冠状病毒等都有很好的治疗效果。重点叙述纳米抗体的结构特点及其在传染性疾病中的研究进展。  相似文献   

10.
纳米酶是具有酶催化活性的纳米材料,对比天然酶,纳米酶具有价格便宜、制备工艺简单、稳定性好、循环利用率高等优势.早期的纳米酶研究主要集中在检测方面,包括检测离子、小分子、核酸、蛋白、癌细胞等,随着对纳米酶的深入了解,研究人员发现纳米酶在疾病治疗领域也具有巨大的应用前景.本论文将介绍纳米酶在杀菌、抗氧化研究领域的最新研究进展.  相似文献   

11.
The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigenbinding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a Ni(+)-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.  相似文献   

12.
Taenia solium cysticercosis is a major helminth zoonosis in developing countries. Pigs are the intermediate hosts mediating transmission of infection. Specific assays to diagnose living cysts in pigs are lacking. The monoclonal-based antigen detection ELISA is genus-specific and cross-reactions with Taenia hydatigena hamper the use of this test to screen pigs. We, therefore, aimed to introduce nanobodies, camelid-derived single-domain antibodies specific for T. solium cysticercosis, to develop unambiguous tests. Nanobodies were cloned following immunization of two dromedaries with T. solium antigen and eight T. solium-specific nanobodies were selected after phage display. Their binding characteristics and potential for the diagnosis of porcine cysticercosis were investigated. The nanobodies do not cross-react with T. hydatigena, Taenia saginata, Taenia crassiceps or Trichinella spiralis and were categorized into four epitope-binding groups. The target protein was identified as 14 kDa diagnostic glycoprotein (Ts14), but the nanobodies also reacted with other proteins of the same family. Nanobodies were tested in a sandwich ELISA with cyst fluid, and one particular nanobody detected its cognate serum antigens in a species-specific inhibition ELISA. Considering their beneficial production and stability properties, these highly specific nanobodies constitute a promising tool to diagnose cysticercosis after further improvement of the sensitivity and future assay validation.  相似文献   

13.
Wang  Wenyi  Yuan  Jumao  Jiang  Changan 《Plant molecular biology》2021,105(1-2):43-53
Key message

Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens.

Abstract

Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.

  相似文献   

14.
Immuno-imaging is a developing technology that aims at studying disease in patients using imaging techniques such as positron emission tomography in combination with radiolabeled immunoglobulin derived targeting probes. Nanobodies are the smallest antigen-binding antibody-fragments and show fast and specific targeting in vivo. These probes are currently under investigation as therapeutics but preclinical studies indicate that nanobodies could also become the next generation of magic bullets for immuno-imaging. Initial data show that imaging can be performed as early as 1 hour post-injection enabling the use of short-lived radio-isotopes. These unique properties should enable patient friendly and safe imaging protocols. This review focuses on the current status of radiolabeled nanobodies as targeting probes for immuno-imaging.  相似文献   

15.
Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages.  相似文献   

16.
Nanobodies are a class of antigen‐binding protein derived from camelids that achieve comparable binding affinities and specificities to classical antibodies, despite comprising only a single 15 kDa variable domain. Their reduced size makes them an exciting target molecule with which we can explore the molecular code that underpins binding specificity—how is such high specificity achieved? Here, we use a novel dataset of 90 nonredundant, protein‐binding nanobodies with antigen‐bound crystal structures to address this question. To provide a baseline for comparison we construct an analogous set of classical antibodies, allowing us to probe how nanobodies achieve high specificity binding with a dramatically reduced sequence space. Our analysis reveals that nanobodies do not diversify their framework region to compensate for the loss of the VL domain. In addition to the previously reported increase in H3 loop length, we find that nanobodies create diversity by drawing their paratope regions from a significantly larger set of aligned sequence positions, and by exhibiting greater structural variation in their H1 and H2 loops.  相似文献   

17.
Chemokine receptors and their ligands play a prominent role in immune regulation but many have also been implicated in inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, allograft rejection after transplantation, and also in cancer metastasis. Most approaches to therapeutically target the chemokine system involve targeting of chemokine receptors with low molecular weight antagonists. Here we describe the selection and characterization of an unprecedented large and diverse panel of neutralizing Nanobodies (single domain camelid antibodies fragment) directed against several chemokines. We show that the Nanobodies directed against CCL2 (MCP-1), CCL5 (RANTES), CXCL11 (I-TAC), and CXCL12 (SDF-1α) bind the chemokines with high affinity (at nanomolar concentration), thereby blocking receptor binding, inhibiting chemokine-induced receptor activation as well as chemotaxis. Together, we show that neutralizing Nanobodies can be selected efficiently for effective and specific therapeutic treatment against a wide range of immune and inflammatory diseases.  相似文献   

18.
骆驼科及鲨鱼科动物血清中天然存在的纳米抗体具有不同于传统单克隆抗体的独特结构和分子量,这为抗体药物开发提供了全新的思路。纳米抗体较小的分子量和优异的稳定性使其在给药方面具有更大的灵活性,可以在一定程度上克服传统单克隆抗体在给药途径方面存在的局限性。同时,较小的分子量使纳米抗体具有双重药代动力学特征,既有优异的组织渗透性,又表现出快速的血液清除。重点介绍纳米抗体的药物代谢动力学特征和进一步改善药代动力学的方法,综述不同给药途径的纳米抗体药物研究进展,对其治疗特定疾病的可行性、安全性以及治疗效果进行分析,以期为纳米抗体药物研发中给药途径的选择提供参考。  相似文献   

19.
Truncated versions of heavy-chain antibodies (HCAbs) from camelids, also termed nanobodies, comprise only one-tenth the mass of conventional antibodies, yet retain similar, high binding affinities for the antigens. Here we analyze a large data set of nanobody–antigen crystal structures and investigate how nanobody–antigen recognition compares to the one by conventional antibodies. We find that nanobody paratopes are enriched in aromatic residues just like conventional antibodies, but additionally, they also bear a more hydrophobic character. Most striking differences were observed in the characteristics of the antigen's epitope. Unlike conventional antibodies, nanobodies bind to more rigid, concave, conserved and structured epitopes enriched with aromatic residues. Nanobodies establish fewer interactions with the antigens compared to conventional antibodies, and we speculate that high binding affinities are achieved due to less unfavorable conformational and more favorable solvation entropy contributions. We observed that interactions with antigen are mediated not only by three CDR loops but also by numerous residues from the nanobody framework. These residues are not distributed uniformly; rather, they are concentrated into four structurally distinct regions and mediate mostly charged interactions. Our findings suggest that in some respects nanobody–antigen interactions are more similar to the general protein–protein interactions rather than antibody–antigen interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号