首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
膝关节软骨缺损发病率高,且自身修复能力有限。治疗膝关节软骨缺损的传统方法包括钻孔术、微骨折术、自体骨软骨移植术。然而,钻孔术和微骨折术治疗后缺损区生成的是纤维软骨,而不是正常的透明软骨,两者在力学强度、硬度、耐磨损性等多方面存在很大差距。自体骨软骨移植术可生成正常的透明软骨,但存在供体有限、不适合进行大面积软骨缺损治疗等多方面缺点在临床方面应用受限。近年来,自体软骨细胞移植技术发展迅速,越来越多的病人接受此治疗方法并获得良好效果,引起人们广泛关注。本文根据近年来国内外的各项相关研究成果进行总结,阐述膝关节软骨缺损的各种治疗方法,着重介绍自体软骨细胞移植技术。第三代自体软骨细胞移植技术生成的软骨以透明软骨为主,符合关节生物力学要求,且避免了第一代、第二代自体软骨细胞移植的术后并发症,成为治疗膝关节大面积软骨缺损安全有效的治疗方法。另外,本文就软骨细胞支架材料的发展、移植物术后的转归等问题提出进一步设想。  相似文献   

2.
目的:探讨经深低温冻存组织工程化软骨修复关节软骨缺损的可行性。方法:分离收集3周龄新西兰大白兔关节软骨细胞进行体外培养,接种于PGA三维支架材料上,复合物体外培养1周后冻存,冻存1个月后解冻、复苏及体外培养,1周后接种于已建立的双侧兔膝关节软骨缺损模型的膝关节软骨缺损处,并设对照组。分别于手术后4周、8周、12周行大体标本及组织观察。结果:大体观察结果表明,实验组与对照组缺损处均由软骨组织修复;组织学观察可以见到实验组和对照组关节软骨缺损处有密集的软骨细胞,均有软骨生成及基质分泌,两组差异无统计学意义。结论:应用深低温冻存组织工程化软骨修复关节软骨缺损的方法是有效可行的,为其进一步临床应用提供了实验依据。  相似文献   

3.
目的:在现有关节镜下microfracture技术的基础上,应用现代干细胞技术修复猪关节软骨缺损,探索注射式软骨缺损微创修复技术用于软骨再生治疗的可行性.方法:抽取6只猪的骨髓体外扩增培养至三代,动物随机分2组,每组6膝,每膝制备1个软骨缺损,左膝行缺损部位microfracture治疗后将3×107/mL浓度的骨髓间充质干细胞注射于关节腔内,右膝为单纯microfracture或空白对照.术后8、16周各3只动物,行大体观察、组织学检测,评价其对关节软骨缺损的再生修复效果.结果:术后8周观察见软骨缺损的修复表面平整,色泽渐趋正常,与周围组织整合良好;术后16周,修复组织具有透明软骨样结构,并产生大量GAGs和Ⅱ型胶原,单纯microfracture治疗组为纤维软骨修复,而空白组为少量纤维组织覆盖缺损底面,观察期内未见毛细血管长入及免疫排斥反应发生.结论:注射式软骨缺损微创修复技术创伤小,操作简便,能显著促进关节软骨缺损的再生修复的特点,具有较高的科学价值及临床应用前景.  相似文献   

4.
通过胰酶消化法分离培养人胎盘来源干细胞(human placenta-derived stem cells,hPDSCs),对其生物学性状进行检测,在一定条件下使其向软骨细胞诱导分化;将hPDSCs和制备的胶原海绵支架材料复合体外构建组织工程软骨组织,移植到裸鼠体内后观察其形成软骨组织的能力,为以hPDSCs作为种子细胞进行组织工程软骨组织的构建提供理论基础.研究发现hPDSCs具有间充质干细胞性状和良好的增殖能力,能连续培养30代以上保持未分化状态;将hPDSCs培养于软骨细胞诱导培养基中,可以分化形成具有生物学功能的软骨细胞.将hPDSCs与胶原海绵支架材料在诱导培养基中复合,7天后可以观察到有软骨样结构形成,Ⅱ型胶原表达阳性;裸鼠体内移植实验证实,hPDSCs与胶原海绵复合后可以在体内形成软骨组织,组织学观察软骨陷窝形成,并且Ⅱ型胶原阳性表达.研究结果表明hPDSCs具有向软骨细胞分化的潜能,与胶原海绵支架材料复合后可以构建形成具有生物学功能的软骨组织,为临床工作中软骨缺损的修复治疗提供了新的治疗策略,具有广阔的临床应用前景。  相似文献   

5.
骨组织工程通过联合利用种子细胞、生物活性因子和支架材料等要素来构建骨组织再生微环境,从而促进骨缺损的修复重建来诱导骨再生。明胶微球具有多孔性、生物降解性、生物相容性及生物安全性等优势,是一种极具应用潜能的骨修复材料。明胶微球用于体外培养种子细胞时可实现高效扩增。多官能团结构使其可作为促血管再生因子、促骨再生因子及抗感染因子等多种药物的递送载体,缓释药物的同时也可实现微球的多功能化。在构建明胶微球支架时与其他生物材料复合及血管化性能的赋予可提高支架材料的综合性能,但目前支架的设计还存在如何兼顾材料多孔结构和力学性能的问题。本文主要综述了明胶微球的常见制备技术及其近年来在骨组织工程中的应用,并对未来的发展前景进行展望。  相似文献   

6.
随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。  相似文献   

7.
目的:研究自体软骨细胞复合于人脐带Wharton胶支架对兔膝关节全层软骨缺损的修复效果。方法:经自体关节软骨细胞 经体外培养后复合到制备人脐带Wharton 胶取向支架内构建细胞- 支架复合体,选取健康清洁新西兰兔23 只,雌雄不拘,体重 2.5-3.0 kg,取滑车沟中下部制作全层软骨缺损模型后随机分成A、B和C 组。A组(n= 10):植入自体软骨细胞+人脐带Wharton 胶取向支架复合体;B组(n= 10):植入单纯人脐带Wharton 胶取向支架;C组(n= 3):不做任何处理正常兔。分别于术后3 个月和6 个月各处死后取材进行生物力学特性评估检测。结果:压痕实验显示在3 个月时A 和B 组修复区组织刚度分别达到正常软骨的 45.72%和25.25%,且A组刚度明显优于B组,均低于C组( P<0.05);到6 个月时各自达到正常软骨刚度的69.76%和35.14%,同 样A 组刚度明显优于B 组,均低于C 组( P<0.05)且在同期个各组之间均有显著性差异(F=80.309,P<0.05)。结论:体外培养的自 体软骨细胞与人脐带Wharton 胶复合在体内的微环境作用下修复软骨缺损效果良好,为软骨组织工程提供了一种新支架材料。  相似文献   

8.
软骨的修复是当前医学界十分棘手的难题,人们采取若干手段均收效甚微。由于软骨缺损时,其下的软骨下骨常出现硬化、退变,而新生软骨是无法与病变的软骨下骨进行整合的,所以在修复软骨的同时,必须重视软骨下骨的修复。近十几年来,人们开始发明和利用各种骨软骨复合支架,进行同时修复软骨与软骨下骨的动物实验研究。在正常骨软骨组织中,软骨与软骨下骨被钙化层所相连,此外钙化层也将软骨与软骨下骨分隔在不同的生存环境中。根据仿生学原理,人们又设计出一种带有隔离层的新型骨软骨复合支架,并取得了较为理想的实验结果。本文就国内外骨软骨复合支架的研完进展作一综述。  相似文献   

9.
目前,器官或组织移植是治疗器官衰竭或大范围组织缺损唯一长期有效的方法,但存在供体短缺、免疫排斥等问题。组织工程技术作为一种潜在的替代治疗方法,支架材料的选择是其中具有决定意义的组成部分。组织工程支架材料按其来源可分为天然及其改性修饰材料、人工合成与复合支架材料3种。组织工程目的就是修复临床上的病损组织或器官,并达到较理想的结构和功能的恢复。因此组织工程支架也必须从基本性质上具有一定的仿生化结构及功能,即"活"支架,这样才能彻底代替病损组织或器官。通过多种支架材料的优化组合(即材料的复合),对材料进行表面改性、制备工艺优化及添加细胞因子缓释微球等技术,模拟病损器官组织的特性及周围环境,有望打开组织工程的新局面。理想的组织工程支架应当以临床需要为根本目的,依靠材料学、分子生物学、工程学等多学科间的交叉研究,取各家之长,优化配比组合,达到仿生的目的。本课题组前期工作已经将骨髓间充质干细胞体外诱导分化为胆管上皮样细胞,并设计出左旋聚乳酸/聚己内酯共聚物(PLCL)胆道支架,内部混有包含生长因子的纳米缓释微球,供细胞因子的远期释放,支架内表面涂有基质胶/胶原混合层,且胶内加入bFGF、EGF,提供诱导因子的早期释放。将诱导细胞与PLCL胆道支架复合,制备组织工程胆管。文中综述了现存各类支架材料的研究状况,简单介绍了制备工艺、表面修饰等影响支架性能的因素,力求探索组织工程支架材料的选择策略。  相似文献   

10.
李澜  蒋青 《生命科学》2020,32(3):267-280
软骨损伤的发病率逐年增高,治疗要求也从过去的缓解疼痛,到现在的恢复运动功能,达到或接近伤前生活质量水平。传统的治疗方式受限于软骨组织特殊的生理病理条件,难以达到良好的远期治疗效果,所以,开发新型有效的治疗方式是软骨组织工程领域的研究热点。要达到良好的软骨修复效果,除了满足必需的生物活性因子与种子细胞要求外,作为载体的水凝胶也至关重要,只有与软骨本身的生物力学特征相似,才能够为软骨再生提供仿生的微环境。为了达到这一要求,已有多种设计方式与结构被应用于软骨组织工程水凝胶的构建,该文从水凝胶结构设计的角度对其在软骨修复组织工程中的应用进行了系统的综述。  相似文献   

11.
Fetal chondrocytes (FCs) have recently been identified as an alternative cell source for cartilage tissue engineering applications because of their partially chondrogenically differentiated phenotype and developmental plasticity. In this study, chondrocytes derived from fetal bovine cartilage were characterized and then cultured on commercially available Cytodex-1 and Biosilon microcarriers and thermosensitive poly(hydroxyethylmethacrylate)-poly(N-isopropylacrylamide) (PHEMA-PNIPAAm) beads produced by us. Growth kinetics of FCs were estimated by means of specific growth rate and metabolic activity assay. Cell detachment from thermosensitive microcarriers was induced by cold treatment at 4 °C for 20 min or enzymatic treatment was applied for the detachment of cells from Cytodex-1 and Biosilon. Although attachment efficiency and proliferation of FCs on PHEMA-PNIPAAm beads were lower than that of commercial Cytodex-1 and Biosilon microcarriers, these beads also supported growth of FCs. Detached cells from thermosensitive beads by cold induction exhibited a normal proliferative activity. Our results indicated that Cytodex-1 microcarrier was the most suitable material for the production of FCs in high capacity, however, ‘thermosensitive microcarrier model’ could be considered as an attractive solution to the process scale up for cartilage tissue engineering by improving surface characteristics of PHEMA-PNIPAAm beads.  相似文献   

12.
Microcarriers in the engineering of cartilage and bone   总被引:6,自引:0,他引:6  
A major problem in tissue engineering is the availability of a sufficient number of cells with the appropriate phenotype for delivery to damaged or diseased cartilage and bone; the challenge is to amplify cell numbers and maintain the appropriate phenotype for tissue repair and restoration of function. The microcarrier bioreactor culture system offers an attractive method for cell amplification and enhancement of phenotype expression. Besides serving as substrates for the propagation of anchorage-dependent cells, microcarriers can also be used to deliver the expanded undifferentiated or differentiated cells to the site of the defect. The present article provides an overview of the microcarrier culture system, its utility as an in vitro research tool and its potential applications in tissue engineering, particularly in the repair of cartilage and bone.  相似文献   

13.
Sports injuries usually involve tissues that display a limited capacity for healing. The treatment of sports injuries has improved over the past 10 to 20 years through sophisticated rehabilitation programs, novel operative techniques, and advances in the field of biomechanical research. Despite this considerable progress, no optimal solution has been found for treatment of various sports-related injuries, including muscle injuries, ligament and tendon ruptures, central meniscal tears, cartilage lesions, and delayed bone fracture healing. New biological approaches focus on the treatment of these injuries with growth factors to stimulate and hasten the healing process. Gene therapy using the transfer of defined genes encoding therapeutic proteins represents a promising way to efficiently deliver suitable growth factors into the injured tissue. Tissue engineering, which may eventually be combined with gene therapy, may potentially result in the creation of tissues or scaffolds for regeneration of tissue defects following trauma. In this article we will discuss why gene therapy and tissue engineering are becoming increasingly important in modern orthopaedic sports medicine practice. We then will review recent research achievements in the area of gene therapy and tissue engineering for sports-related injuries, and highlight the potential clinical applications of this technology in the treatment of patients with musculoskeletal problems following sports-related injuries.  相似文献   

14.
人体组织损伤再生修复一直是临床面临的难题,近年来,随着细胞生物学和组织工程技术的发展,生物补片作为一种新兴的创伤修复材料的出现为人们带来了曙光,生物补片是天然真皮基质经脱细胞处理而形成的三维支架结构,作为生物工程支架可通过空间诱导和组织替代作用修复组织缺损,由于其去除了引起宿主免疫排斥反应的所有成分,具有良好的组织相容性,现已广泛应用于临床各领域的缺损组织修复,并取得了良好的应用前景。生物补片在疝外科的应用较为成熟,尤其对合并感染的情况治疗效果颇佳,在小儿疝外科的应用效果亦较好;在治疗肛瘘方面,生物补片的应用,改变了传统的治疗理念,实现了肛门括约肌的功能性重建;在整形医学领域中烧伤、隆鼻及隆乳方面的应用,利用生物补片再生的机制,使组织恢复原貌更具美学价值;在妇产科方面,盆底解剖及功能重建方面前景广阔。然而在骨科中的骨组织及韧带再生,泌尿外科中膀胱、输尿管及阴茎的重建,心血管邻域中修复心脏瓣膜治疗先天性心脏病方面的应用虽取得一定的成果但整体仍处于实验探索阶段,仍需继续研究拓展;生物补片虽然已形成商品化但因其价格昂贵等因素阻碍了临床广泛应用。本文就近年来生物补片在外科领域的应用研究进展作一综述。  相似文献   

15.
Repair and regeneration of osteochondral defects in the articular joints   总被引:6,自引:0,他引:6  
People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.  相似文献   

16.
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone, and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues. This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral, and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry and gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering.  相似文献   

17.
Composite scaffolds for cartilage tissue engineering   总被引:2,自引:0,他引:2  
Moutos FT  Guilak F 《Biorheology》2008,45(3-4):501-512
Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.  相似文献   

18.
This review provides a balanced integration of the most recent chemical, biochemical and medical information on the unique characteristics of chitins and chitosans in the area of animal/human tissue regeneration. Hemostasis is immediately obtained after application of most of the commercial chitin-based dressings to traumatic and surgical wounds: platelets are activated by chitin with redundant effects and superior performances compared with known hemostatic materials. To promote angiogenesis, necessary to support physiologically ordered tissue formation, the production of the vascular endothelial growth factor is strongly up-regulated in wound healing when macrophages are activated by chitin/chitosan. The inhibition of activation and expression of matrix metalloproteinases in primary human dermal fibroblasts by low MW chitosans prevents or solves problems caused by metalloproteinase-2 such as the hydrolysis of the basement membrane collagen IV. Experimental biocompatible wound dressings derived from chitin are today available in the form of hydrogels, xerogels, powders, composites, films and scaffolds: the latter are easily colonized by human cells in view of the restoration of tissue defects, with the advantage of avoiding retractive scar formation. The growth of nerve tissue has been guided with chitin tubes covalently coated with oligopeptides derived from laminin. The regeneration of cartilage is also feasible because chitosan maintains the correct morphology of chondrocytes and preserves their capacity to synthesize cell-specific extracellular matrix: chitosan scaffolds incorporating growth factors and morphogenetic proteins have been developed. Impressive advances have been made with osteogenic chitosan composites in treating bone defects, particularly with osteoblasts from mesenchymal stem cells in porous hydroxyapatite-chitin matrices. The introduction of azido functions in chitosan has provided photo-sensitive hydrogels that crosslink in a matter of seconds, thus paving the way to cytocompatible hydrogels for surgical use as coatings, scaffolds, drug carriers and implants capable to deliver cells and growth factors. The peculiar biochemical properties of chitins and chitosans remain unmatched by other polysaccharides.  相似文献   

19.
Osteochondral defect management and repair remain a significant challenge in orthopedic surgery. Osteochondral defects contain damage to both the articular cartilage as well as the underlying subchondral bone. In order to repair an osteochondral defect the needs of the bone, cartilage and the bone-cartilage interface must be taken into account. Current clinical treatments for the repair of osteochondral defects have only been palliative, not curative. Tissue engineering has emerged as a potential alternative as it can be effectively used to regenerate bone, cartilage and the bone-cartilage interface. Several scaffold strategies, such as single phase, layered, and recently graded structures have been developed and evaluated for osteochondral defect repair. Also, as a potential cell source, tissue specific cells and progenitor cells are widely studied in cell culture models, as well with the osteochondral scaffolds in vitro and in vivo. Novel factor strategies being developed, including single factor, multi-factor, or controlled factor release in a graded fashion, not only assist bone and cartilage regeneration, but also establish osteochondral interface formation. The field of tissue engineering has made great strides, however further research needs to be carried out to make this strategy a clinical reality. In this review, we summarize current tissue engineering strategies, including scaffold design, bioreactor use, as well as cell and factor based approaches and recent developments for osteochondral defect repair. In addition, we discuss various challenges that need to be addressed in years to come.  相似文献   

20.
We have developed microcarriers made from silk fibroin. Microcarriers can be used as a substrate for cell cultivation and cell delivery during cell-based therapy and for the construction of bioengineered tissue. Fibroin microcarriers were mineralized, which led to the appearance of calcium phosphate crystals on their surface. The ability of mineralized and nonmineralized microcarriers to support osteogenic differentiation of the osteoblast-like cell line MG-63 was estimated by alkaline phosphatase activity, an early marker of bone formation. The experiment showed cells actively proliferating on the surface of both mineralized and nonmodified microcarriers. Culturing MG-63 on the surface of fibroin microcarriers resulted in an increase of alkaline phosphatase activity indicative of osteogenic differentiation of MG-63 cells in the absence of inductors. The level of alkaline phosphatase was higher when mineralized microcarriers were used. Alkaline phosphatase activity of MG-63 cells cultivated using traditional two-dimensional approaches were close to zero. As opposed to conventional monolayer culturing, microcarrier culture cells are in a three-dimensional environment that is closer to physiological conditions. This can have a significant impact on their morphology and functional properties. During this study, we also characterized mechanical properties of porous scaffolds used for microcarriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号