首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our understanding of Escherichia coli biofilm formation in vitro is based on studies of laboratory K-12 strains grown in standard media. However, pathogenic E. coli isolates differ substantially in their genetic repertoire from E. coli K-12 and are subject to heterogeneous environmental conditions. In this study, in vitro biofilm formation of 331 nondomesticated E. coli strains isolated from healthy (n = 105) and diarrhea-afflicted children (n = 68), bacteremia patients (n = 90), and male patients with urinary tract infections (n = 68) was monitored using a variety of growth conditions and compared to in vitro biofilm formation of prototypic pathogenic and laboratory strains. Our results revealed remarkable variation among the capacities of diverse E. coli isolates to form biofilms in vitro. Notably, we could not identify an association of increased biofilm formation in vitro with a specific strain collection that represented pathogenic E. coli strains. Instead, analysis of biofilm data revealed a significant dependence on growth medium composition (P < 0.05). Poor correlation between biofilm formation in the various media suggests that diverse E. coli isolates respond very differently to changing environmental conditions. The data demonstrate that prevalence and expression of three factors known to strongly promote biofilm formation in E. coli K-12 (F-like conjugative pili, aggregative adherence fimbriae, and curli) cannot adequately account for the increased biofilm formation of nondomesticated E. coli isolates in vitro. This study highlights the complexity of genetic and environmental effectors of the biofilm phenotype within the species E. coli.  相似文献   

2.
The prevailing lifestyle of bacteria is sessile and they attach to surfaces in structures known as biofilms. In Escherichia coli, as in many other bacteria, biofilms are formed at the air-liquid interface, suggesting that oxygen has a critical role in the biofilm formation process. It has been reported that anaerobically growing E. coli laboratory strains are unable to form biofilms even after 96 h of incubation on Luria Bertani (LB) medium. After analyzing 22,000 transposon-induced and 26,000 chemically-induced mutants we failed to isolate an E. coli laboratory strain with the ability to form biofilm under anaerobic growth conditions. Notably, seven strains from a collection of E. coli isolated from different hosts and the environment had the ability to form biofilm in the absence of oxygen. Interestingly, spent medium from cultures of one strain, Souza298, can promote biofilm formation of E. coli laboratory strains growing under anaerobic conditions. Our results led us to propose that laboratory E. coli strains do not release (or synthesize) a molecule needed for biofilm formation under anoxic conditions but that they bear all the required machinery needed for this process.  相似文献   

3.
Escherichia coli K-12, B, C and W strains are the most frequently used bacterial safety and laboratory strains. Lineage-specific DNA fragments were detected by microplate subtractive hybridization and utilized to create a fast differentiation method using a single PCR reaction to differentiate clearly the four lineages and separate them from pathogenic variants. The method has been evaluated on a comprehensive selection of widely used laboratory strains and a variety of pathogenic E. coli representatives. In addition, in silico analysis on all available E. coli genomes and the genomes of the close relatives Shigella and Salmonella confirmed the reliability of the proposed method. A fast identification and differentiation of E. coli safety strains by Multiplex-PCR is a useful tool for researchers and companies to check and monitor their reference stocks.  相似文献   

4.
Using the Ames plate reversion and fluctuation tests, the mutagenic activity of chloroquine was tested in the new tester strains of Salmonella typhimurium, TA97, TA102, and Escherichia coli strains WP2, WP2hcr, WP6 and WP67. The E. coli transconjugants obtained from the mating transfer of R-plasmid(s) in strains TA97 and TA102 respectively to E. coli WP2, i.e. EE97 and EE102, were also tested. Chloroquine reverted strain TA97 from histidine dependence to independence and also reverted E. coli strains EE97 and EE102 from tryptophan dependence to independence. The E. coli strains WP2, WP2hcr; WP6 and WP67 and S. typhimurium TA102 were not affected. S. typhimurium TA97 could be reverted with 250 ng/ml of chloroquine (therapeutic blood level of chloroquine is 300 ng/ml). Reversion generally occurred optimally at the relatively lower concentrations of chloroquine i.e. 25, 50 micrograms/ml than at higher concentrations. From the properties of the reverted tester strains, the results indicated that chloroquine per se mediated frameshift reversion.  相似文献   

5.
Laboratory-Dependent Bacterial Ecology: a Cautionary Tale   总被引:1,自引:0,他引:1       下载免费PDF全文
Although laboratory dependence is an acknowledged problem in microbiology, it is seldom intensively studied or discussed. We demonstrate that laboratory dependence is real and quantifiable even in the popular model Escherichia coli. Here laboratory effects alter the equilibrium composition of a simple community composed of two strains of E. coli. Our data rule out changes in the bacterial strains, chemical batches, and human handling but implicate differences in growth medium, especially the water component.  相似文献   

6.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

7.
Bacterial protein secretion is important in the life cycles of most bacteria, in which it contributes to the formation of pili and flagella and makes available extracellular enzymes to digest polymers for nutritional purposes and toxins to kill host cells in infections of humans, animals and plants. It is generally accepted that nonpathogenic laboratory strains of Escherichia coli, particularly K12 strains, do not secrete proteins into the extracellular medium under routine growth conditions. In this study, we report that commonly used laboratory strains secrete YebF, a small (10.8 kDa in the native form), soluble endogenous protein into the medium, challenging the status quo view that laboratory strains do not secrete proteins to the medium. We further show that 'passenger' proteins linked to the carboxyl end of YebF are efficiently secreted. The function of YebF is unknown, but its use as a carrier for transgenic proteins provides a tool to circumvent toxicity and other contamination issues associated with protein production in E. coli.  相似文献   

8.
Rapid and accurate identification of Escherichia coli K-12 strains.   总被引:2,自引:2,他引:0       下载免费PDF全文
P Kuhnert  J Nicolet    J Frey 《Applied microbiology》1995,61(11):4135-4139
A specific PCR for the identification of K-12 strains, based on the genetic structure of the O-antigen gene cluster (rfb) of Escherichia coli K-12, is described. The assay clearly differentiates E. coli K-12-derived strains from other E. coli strains used in the laboratory or isolated from human and animal clinical specimens, from food, or from environmental samples. Moreover, lineages of K-12 strains can be distinguished with a second PCR based on the same gene cluster. The method presents a useful tool in identifying K-12 for monitoring strains which are used as biologically safe vehicles in biotechnological research, development, and production processes.  相似文献   

9.
Comparisons of the genetic maps of Escherichia coli K-12 and Salmonella typhimurium LT2 suggest that the size and organization of bacterial chromosomes are highly conserved. Employing pulsed-field gel electrophoresis, we have estimated the extent of variation in genome size among 14 natural isolates of E. coli. The BlnI and NotI restriction fragment patterns were highly variable among isolates, and genome sizes ranged from 4,660 to 5,300 kb, which is several hundred kilobases larger than the variation detected between enteric species. Genome size differences increase with the evolutionary genetic distance between lineages of E. coli, and there are differences in genome size among the major subgroups of E. coli. In general, the genomes of natural isolates are larger than those of laboratory strains, largely because of the fact that laboratory strains were derived from the subgroup of E. coli with the smallest genomes.  相似文献   

10.
Lysogenised verotoxigenic strains are the source of structural genes of verocytotoxins (stx-1 and stx-2) for the others intestinal bacili. The aim of the study was to estimate the ability of transfer of bacteriophages induced with UV irradiation from reference verotoxigenic strains of E. coli O157:H7 (CB571 and EDL933) into 125 wild-strains of bacili of Enterobacteriaceae family. None of tested recipient strains showed the production of cytotoxin on Vero and HeLa cell lines, what was acknowledged as the lack of six genes. Contrary to the laboratory strain of E. coli C600 none of 125 tested recipient strains accepted the phages. Obtained lysogenised laboratory strains of E. coli C600/CB571 and E. coli C600/EDL933, besides of the ability to produce verotoxins (with the presence of stx-1 and stx-2 genes), did not differ phenotypically and genotypically from parent strain of E. coli C600. The estimation of the ability to transfer of phages carried stx-1 and/or stx-2 genes was impossible because of too small number of tested wild strain of bacili or because of really low frequency of acceptation of phages by wild strains of intestinal bacili.  相似文献   

11.
A group of Escherichia coli isolates from nature were compared with one another and with laboratory strains of E. coli with respect to size distribution of chromosomal restriction endonuclease fragments and differences in nucleotide sequences in selected small portions of the genomes. The estimated frequency of base substitutions in nucleotide sequences in and near the trp operons of 26 of the 28 E. coli strains examined ranged from 0.008 to 0.066. Nucleotide sequences in or near lambda prophage homologs were significantly more variable than the sequences in or near trp, tnaA, and thyA genes. Thus, the lambda-homologous regions may have a significant horizontal component in their evolutionary histories, having undergone genetic exchange, whereas the trp, tnaA, and thyA regions may have solely vertical evolutionary histories. The relatedness of the E. coli strains in the genetic regions studied indicated that laboratory strains are not more closely related to one other than they are to isolates from nature. The isolates from natural populations did not form groups related either by host taxa or by geographical region of isolation.  相似文献   

12.
The complete 13 site AvrII restriction map of the genome of E coli strain MG1655 is presented and compared with several other E. coli strains. The map was determined primarily by isolating individual AvrII fragments from pulsed-field gels, and hybridizing these large probes to a battery of mapped E. coli clones in lambda vectors. AvrII restriction patterns for eight other laboratory strains were determined and maps for seven of them deduced from the gel and comparisons between the strain genotypes, the MG1655 map, and AvrII sites in E. coli sequences taken from Genbank.  相似文献   

13.
Hydrogen Sulfide-Producing Variants of Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
Seventeen strains of H(2)S-producing variants of Escherichia coli were isolated from specimens submitted for microbiological study (ten from stool, five from urine, and two from postmortem material). Production of H(2)S was unstable in several strains; however, other than their production of H(2)S, all strains closely resembled typical E. coli in their biochemical reactions. In vitro susceptibilities of the H(2)S-producing variants to antimicrobics closely resembled those of typical E. coli in this laboratory.  相似文献   

14.
15.
Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes present initially in the isolate, and (iii) was inhibited through the presence in the cocultured K-12 strain of a related conjugative plasmid, presumably due to surface exclusion functions. Synergistic effects of cocultivation of pairs of natural isolates were also observed, demonstrating that biofilm promotion in this system is not dependent on the laboratory strain and that the described model system could provide relevant insights on mechanisms of biofilm development in natural E. coli populations.  相似文献   

16.
The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.  相似文献   

17.
A model was developed for the temperature dependence of growth rate of a non-pathogenic Escherichia coli strain. The suitability of that model for predicting the growth rate of pathogenic E. coli strains was assessed. Growth rates of pathogenic strains were found to be adequately described by the model. Model predictions were also found to describe sufficiently well-published growth rate data for non-pathogenic E. coli on mutton carcase surfaces and E. coli O157:H7 in ground roasted beef, milk, and on cantaloupes and water melons. In addition, E. coli O157:H7 was found to grow in the region of 44–45·5 °C.  相似文献   

18.
Chromosomal DNAs of enterohemorrhagic, uropathogenic, and laboratory attenuated Escherichia coli strains differ in the rpoS-mutS region. Many uropathogens lack a deletion and an insertion characteristic of enterohemorrhagic strains. At the same chromosomal position, they harbor a 2.1-kb insertion of unknown origin with a base composition suggestive of horizontal gene transfer. Unlike virulence determinants associated with urinary tract infection and/or neonatal meningitis (pap or prs, sfa, kps, and hly), the 2.1-kb insertion is shared by all group B2 strains of the E. coli Reference Collection.  相似文献   

19.
Until now, Escherichia coli was thought to be unable to develop natural competence, i.e., genetic transformation could be achieved only artificially with the aid of nonphysiological concentrations of calcium ions or by other treatments. We have tested the competence development of E. coli through transformation under natural conditions in river water, springwater, and mineral water which contained between 0 and 11 mM Ca2+, using pUC18 DNA. The presence of calcium ions at concentrations as low as 1 to 2 mM was sufficient to obtain transformants. Variations in the temperature of incubation were not required for competence development but had an influence on the transformation frequency. Using water from mineral springs originating from calcareous regions, we have obtained transformation frequencies with laboratory strains of E. coli similar to those reported for other gram-negative bacteria known to develop natural competence. The competence development of E. coli is most probably internally regulated (as for the other gram-negative bacteria), and inadequate conditions chosen for the transformation tests in the laboratory might impair the detection of higher natural transformation frequencies. The results will enhance our knowledge about the fate of laboratory or production strains of E. coli cells reaching natural aquatic ecosystems.  相似文献   

20.
We describe a rational approach to simultaneously test Escherichia coli strains for the presence of known virulence genes in a reverse dot blot procedure. Specific segments of virulence genes of E. coli designed to have similar hybridization parameters were subcloned on plasmids and subsequently amplified by PCR as unlabeled probes in amounts sufficient to be bound to nylon membranes. Various pathogenic isolates and laboratory strains of E. coli were probed for the presence of virulence genes by labeling the genomic DNA of these strains with digoxigenin and then hybridizing them to the prepared nylon membranes. These hybridization results demonstrated that besides the E. coli K-12 safety strain derivatives, E. coli B and C strains are also devoid of genes encoding any of the investigated virulence factors. In contrast, pathogenic E. coli control strains, used to evaluate the method, showed typical hybridization patterns. The described probes and their easy application on a single filter were shown to provide a useful tool for the safety assessment of E. coli strains to be used as hosts in biotechnological processes. This approach might also be used for the identification and characterization of clinically significant E. coli isolates from human and animal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号