首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-dependent bark photosynthesis of aspen twigs   总被引:5,自引:0,他引:5  
The photosynthetic performance of trembling aspen (Populus tremula L.) twigs and leaves was studied in relation to selected structural features of aspen bark. PFD transmittance of intact periderm was reduced by about 90% in current-year twigs through peridermal thickening. However, because of drastic changes within the bark microstructure, PFD transmittance increased in 1-year-old twig segments up to 26% of the incident PFD. On a unit surface area basis, the chlorophyll content of young twigs (425 mg Chl m-2) almost reached that of leaves (460 mg Chl m-2). The chlorophyll content of aspen bark chlorenchyma was clearly age-dependent, even increasing in current-year twigs with advancing internodal age. The low bark chlorophyll a/b ratios (about 2.6 compared with 3.9 in leaves) indicate that bark chloroplasts are shade-adapted. Positive net photosynthesis was not found in aspen twigs, but apparent respiration was distinctly reduced in the light due to light-driven carbon refixation (bark photosynthesis) within the chlorenchymal tissues. Under constant microclimatic conditions, dark respiration rates were strongly correlated with stem-internal CO2 refixation. In accordance with increasing dark respiration rates, the efficiency of this carbon recycling was generally greater in the metabolically more active, younger twig segments than in older segments; carbon refixation rates reached up to 80% of dark respiration values. At least in young twigs and branches and thus in the light-exposed outer parts of tree crowns, respiratory CO2 losses by the tree skeleton could efficiently be reduced. Refixation of carbon dioxide may be of great importance for carbon budgets in the environmentally controlled or pathogen-induced leafless states of deciduous aspen trees.  相似文献   

2.
Dynamic responses of understory plants to sunflecks have been extensively studied, but how much differences in dynamic light responses affect daily photosynthesis (Aday) is still the subject of active research. Recent models of dynamic photosynthesis have provided a quantitative tool that allows the critical assessment of the importance of these sunfleck responses on Aday. Here we used a dynamic photosynthesis model to assess differences in four species that were growing in ambient and elevated CO2. We hypothesized that Liriodendron tulipifera, a species with rapid photosynthetic induction gain and slow induction loss, would have the least limitations to sunfleck photosynthesis relative to the other three species (Acer rubrum, Cornus florida, Liquidambar styraciflua). As a consequence, L. tulipifera should have the highest Aday in an understory environment, despite being the least shade tolerant of the species tested. We further hypothesized that daily photosynthetic enhancement by elevated CO2 would differ from enhancement levels observed during light-saturated, steady-state measurements. Both hypotheses were supported by the model results under conditions of low daily photosynthetic photon flux density (PFD; <3% of the above-canopy PFD). However, under moderate PFD (10-20% of the above-canopy PFD), differences in dynamic sunfleck responses had no direct impact on Aday for any of the species, since stomatal and photosynthetic induction limitations to sunfleck photosynthesis were small. Thus, the relative species ranking in Aday under moderate PFD closely matched their rankings in steady-state measurements of light-saturated photosynthesis. Similarly, under elevated CO2, enhancement of modeled Aday over Aday at ambient CO2 matched the enhancement measured under light saturation. Thus, the effects of species-specific differences in dynamic sunfleck responses, and differences in elevated CO2 responses of daily photosynthesis, are most important in marginal light environments.  相似文献   

3.
The consumption and assimilation rates of the woodlouse Armadillidium vulgare were measured on leaf litters from five herb species grown and naturally senesced at 350 and 700 µl l-1 CO2. Each type of litter was tested separately after 12, 30 and 45 days of decomposition at 18°C. The effects of elevated CO2 differed depending on the plant species. In Medicago minima (Fabaceae), the CO2 treatment had no significant effect on consumption and assimilation. In Tyrimnus leucographus (Asteraceae), the CO2 treatment had no significant effect on consumption, but the elevated CO2 litter was assimilated at a lower rate than the ambient CO2 litter after 30 days of decomposition. In the three other species, Galactites tomentosa (Asteraceae), Trifolium angustifolium (Fabaceae) and Lolium rigidum (Poaceae), the elevated CO2 litter was consumed and/or assimilated at a higher rate than the ambient CO2 litter. Examination of the nitrogen contents in these three species of litter did not support the hypothesis of compensatory feeding, i.e. an increase in woodlouse consumption to compensate for low nitrogen content of the food. Rather, the results suggest that in herbs that were unpalatable at the start of the experiment (Galactites, Trifolium and Lolium), more of the the litter produced at 700 µl l-1 CO2 was consumed than of that produced at 350 µl l-1 because inhibitory factors were eliminated faster during decomposition.  相似文献   

4.
Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gs declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gs and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.  相似文献   

5.
Water availability and carbon isotope discrimination in conifers   总被引:22,自引:0,他引:22  
The stable C isotope composition ('13C) of leaf and wood tissue has been used as an index of water availability at both the species and landscape level. However, the generality of this relationship across species has received little attention. We compiled literature data for a range of conifers and examined relationships among landscape and environmental variables (altitude, precipitation, evaporation) and '13C. A significant component of the variation in '13C was related to altitude (discrimination decreased with altitude in stemwood, 2.53‰ km-1 altitude, r2=0.49, and in foliage, 1.91‰ km-1, r2=0.42), as has been noted previously. The decrease in discrimination with altitude was such that the gradient in CO2 partial pressure into the leaf (Pa-Pi) and altitude were generally unrelated. The ratio of precipitation to evaporation (P/E) explained significant variation in Pa-Pi of stemwood (r2=0.45) and foliage (r2=0.27), but only at low (<0.8) P/E. At greater P/E there was little or no relationship, and other influences on '13C probably dominated the effect of water availability. We also examined the relationship between plant drought stress (O) and '13C within annual rings of stemwood from Pinus radiata and Pinus pinaster in south-western Australia. Differential thinning and fertiliser application produced large differences in the availability of water, nutrients and light to individual trees. At a density of 750 stems ha-1, O and '13C were less (more negative) than at 250 stems ha-1 indicating greater drought stress and less efficient water use, contrary to what was expected in light of the general relationship between discrimination and P/E. The greater '13C of trees from heavily thinned plots may well be related to an increased interception of radiation by individual trees and greater concentrations of nutrients in foliage - attributes that increase rates of photosynthesis, reduce Pi and increase '13C. '13C was thus modified to a greater extent by interception of radiation and by nutrient concentrations than by water availability and the '13C-O relationship varied between thinning treatments. Within treatments, the relationship between '13C and O was strong (0.38<r2<0.58). We conclude that '13C may well be a useful indicator of water availability or drought stress, but only in seasonally dry climates (P/E<1) and where variation in other environmental factors can be accounted for.  相似文献   

6.
CO2 uptake and diffusion conductance of Valencia orange fruits(Citrus sinensis L. Osbeck) were measured in the field duringthe growing season of 1977/78 to ascertain if, as in the leaf,stomata control photosynthesis and transpiration under changingenvironmental conditions. Measurements were made on 15 yearold trees grown in a sandy loam soil and receiving either adry or a wet treatment. Fruit diffusive conductance was measuredwith a modified water vapour diffusion conductance meter andgross photosynthesis was measured with a 14CO2 uptake meter.Photosynthetically active radiation (PAR) was measured witha quantum sensor. Fruits exposed to light assimilated CO2 ata rate which was 25–50% of that assimilated by leaves.The uptake was dependent on fruit size, PAR, chlorophyll content,and on diffusive conductance of the fruit epidermis. Epidermalconductance showed a diurnal trend which was similar in shapeto that of the leaf except in the late afternoon. Cuticularconductance of the fruit was calculated and ranged between 0.22and 0.30 mm s–1. It was speculated that the CO2 uptakeby the fruit could support the growth of flavedo cell layerswhen exposed to light. Dry soil caused an increase in the 14CO2uptake by fruit possibly caused by the increased potential areaof the stomatal opening per unit of fruit surface area.  相似文献   

7.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

8.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

9.
Equipment is described which delivers air with concentrationsof CO2 and water vapour closely controlled in the ranges 0 to2500 ppm and 5 to 15 mb respectively, at flow rates of up to10 1 min-1, to each four leaf chambers. The leaf temperatureis controlled to ±0.5 °C and, with a light intensityof 0.3 cal cm-2 min-1 visible radiation (0.4 to 0.7 µm)leaf temperature can be maintained at 17.5 °C.The apparatusused to measure the concentration differences between the watervapour and CO2 entering and leaving the leaf chamber (used tocalculate transpiration, photosynthetic, and respiration rates)is described in detail.Results of tests, which show the necessityfor mounting a fan within the leaf chamber, are reported.Typicallight- and CO2-response curves are given for kale leaves (Brassicaoleracca var. acephala) and an attempt is made to quantify theerrors in the measurement of photosynthesis and transpiration.  相似文献   

10.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

11.
Carbon isotope discrimination in photosynthetic bark   总被引:1,自引:0,他引:1  
We developed and tested a theoretical model describing carbon isotope discrimination during photosynthesis in tree bark. Bark photosynthesis reduces losses of respired CO2 from the underlying stem. As a consequence, the isotopic composition of source CO2 and the CO2 concentration around the chloroplasts are quite different from those of photosynthesizing leaves. We found three lines of evidence that bark photosynthesis discriminates against 13C. First, in bark of Populus tremuloides, the '13C of CO2 efflux increased from -24.2‰ in darkness to -15.8‰ in the light. In Pinus monticola, the '13C of CO2 efflux increased from -27.7‰ in darkness to -10.2‰ in the light. Observed increases in '13C were generally in good agreement with predictions from the theoretical model. Second, we found that '13C of dark-respired CO2 decreased following 2-3 h of illumination (P<0.01 for Populus tremuloides, P<0.001 for Pinus monticola). These decreases suggest that refixed photosynthate rapidly mixes into the respiratory substrate pool. Third, a field experiment demonstrated that bark photosynthesis influenced whole-tissue '13C. Long-term light exclusion caused a localized increase in the '13C of whole bark and current-year wood in branches of P. monticola (P<0.001 and P<0.0001, respectively). Thus bark photosynthesis was shown to discriminate against 13C and create a pool of photosynthate isotopically lighter than the dark respiratory pool in all three experiments. Failure to account for discrimination during bark photosynthesis could interfere with interpretation of the '13C in woody tissues or in woody-tissue respiration.  相似文献   

12.
We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 enrichment site in Rhinelander, Wisconsin. We added either 13C-labeled cellobiose or 13C-labeled N-acetylglucosamine to soils collected beneath ecologically distinct temperate trees exposed for 3 years to factorial CO2 (ambient and 200 µl l-1 above ambient) and O3 (ambient and 20 µl l-1 above ambient) treatments. For both labeled substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by 29% compared to ambient; elevated O3 eliminated this effect. Production of 13C-CO2 from soils beneath aspen (Populus tremuloides Michx.) and aspen-birch (Betula papyrifera Marsh.) was greater than that beneath aspen-maple (Acer saccharum Marsh.). Phospholipid fatty acid analyses (13C-PLFAs) indicated that the microbial community beneath plants exposed to elevated CO2 metabolized more 13C-cellobiose, compared to the microbial community beneath plants exposed to the ambient condition. Recovery of 13C in PLFAs was an order of magnitude greater for N-acetylglucosamine-amended soil compared to cellobiose-amended soil, indicating that substrate type influenced microbial metabolism and soil C cycling. We found that elevated CO2 increased fungal activity and microbial metabolism of cellobiose, and that microbial processes under early-successional aspen and birch species were more strongly affected by CO2 and O3 enrichment than those under late-successional maple.  相似文献   

13.
The objective of this study was to evaluate the potential contribution of the soil microbial community in the vicinity of two plant covers, Sanionia uncinata and Deschampsia antarctica, at Machu Picchu Station, King George Island, Antarctica. Soil samples were collected at the study site during the southern (pole) summer period from 0-5 cm and 5-10 cm depths, for chemical and biological analyses. Soil microbial biomass reached a maximal value of 144 µg g-1 in soil samples taken from under the S. uncinata upper layer plant. qCO2 ranged from 167 to 239 µg CO2.mgCmic.h-1 at the 0-5 and 5-10 cm depths, respectively. CO2 evolution showed values of 54.3 mg.m-2 h-1 beneath plant cover and 55.9 mg.m-2 h-1 in the open space. CO2 evolved by substrate induced respiration in the soil samples taken under the plant cover in the summer period, oscillated between 0.25 and 4.78 µg CO2 g-1 h-1. The data obtained from this short study may provide evidence that both activity and the composition and substrate utilization of the microbial community appear to change substantially across the moisture level and sample location.  相似文献   

14.
In a study on metabolic consumption of photosynthetic electronsand dissipation of excess light energy under water stress, O2and CO2 gas exchange was measured by mass spectrometry in tomatoplants using 18O2 and 13CO2. Under water stress, gross O2 evolution(EO), gross O2 uptake (UO), net CO2 uptake (PN), gross CO2 uptake(TPS), and gross CO2 evolution (EC) declined. The ratio PN/EOfell during stress, while the ratios UO/EO and EC/TPS rose.Mitochondrial respiration in the light, which can be measureddirectly by 12CO2 evolution during 13CO2 uptake at 3000 µll–1 13CO2, is small in relation to gross CO2 evolutionand CO2 release from the glycolate pathway. It is concludedthat PSII, the Calvin cycle and mitochondrial respiration aredown-regulated under water stress. The percentages of photosyntheticelectrons dissipated by CO2 assimilation, photorespiration andthe Mehler reaction were calculated: in control leaves morethan 50 % of the electrons were consumed in CO2 assimilation,23 % in photorespiration and 13 % in the Mehler reaction. Undersevere stress the percentages of electrons dissipated by CO2assimilation and the Mehler reaction declined while the percentageof electrons used in photorespiration doubled. The consumptionof electrons in photorespiration may reduce the likelihood ofdamage during water deficit.  相似文献   

15.
Carbon dioxide and water vapour exchange rates were measuredon attached leaves of field-grown citrus trees. The exchangerates were measured continuously during several weeks in thespring of two successive years. These data confirmed the ratherlow rates of maximum CO2 exchange (6–11 µmol m–2s–1) by citrus leaves. However, the maximum rate was maintainedthrough the midday period on only about half the days. On theother days, characterized by high temperatures and high atmosphericwater vapour pressure deficits, pronounced midday depressionsin CO2 exchange rates were observed. Since midday transpirationremained stable at a constant rate even with increasing vapourpressure deficit, these results indicate that stomatal closurewas occurring. In fact, the data suggest tfiat specific, maximumtranspiration rates were associated with differing rootstocks.Thus, the rate of water supply to the leaves may be an importantfactor in determining the maximum transpiration rate, and therebymediating control of stomatal conductance and the resultantmidday depression in CO2 exchange rates.  相似文献   

16.
Carbon dioxide flux from coarse woody debris (CWD) is an important source of CO2 in forests with moderate to large amounts of CWD. A process-based understanding of environmental controls on CWD CO2 flux (RCWD) is needed to accurately model carbon exchange between forests and the atmosphere. The objectives of this study were to: (1) use a laboratory incubation factorial experiment to quantify the effect of temperature (TCWD), water content (WC), decay status, and their interactions on RCWD for black spruce [Picea mariana (Mill.) BSP] CWD; (2) measure and model spatial and temporal dynamics in TCWD for a boreal black spruce fire chronosequence; and (3) validate the RCWD model with field measurements, and quantify potential errors in estimating annual RCWD from this model on various time steps. The RCWD was positively correlated to TCWD (R2=0.37, P<0.001) and WC (R2=0.18, P<0.001), and an empirical RCWD polynomial model that included TCWD and WC interactions explained 74% of the observed variation of RCWD. The RCWD estimates from the RCWD model excellently matched the field measurements. Decay status of CWD significantly (P<0.001) affected RCWD. The temperature coefficient (Q10) averaged 2.5, but varied by 141% across the 5-42°C temperature range, illustrating the potential shortcomings of using a constant Q10. The CWD temperature was positively correlated to air temperature (R2=0.79, P<0.001), with a hysteresis effect that was correlated to CWD decay status and stand leaf area index . Ignoring this temperature hysteresis introduced errors of -1% to +32% in annual RCWD estimates. Increasing TCWD modeling time step from hourly to daily or monthly introduced a 5-11% underestimate in annual RCWD. The annual RCWD values in this study were more than two-fold greater than those in a previous study, illustrating the need to incorporate spatial and temporal responses of RCWD to temperature and water content into models for long-term RCWD estimation in boreal forest ecosystems.  相似文献   

17.
Beech seedlings (Fagus sylvatica L.) were exposed to episodes of O3 in environmentally controlled growth chambers during one growing season. Three treatments were applied: charcoal-filtered air, charcoal-filtered air with the addition of 40 ppb O3 for seven episodes of 5 days' duration (9000-1700 hours), and charcoal-filtered air with the addition of 100 ppb O3 for seven episodes of 5 days' duration (9000-1700 hours). The accumulated exposure over a threshold of 40 ppb in the last treatment reached 13,911 ppb h. Throughout the growing season we measured growth as well as photosynthetic properties and related effects to external and calculated internal doses of O3, using stomatal conductance (gs) data. Growth, measured as diameter increment and biomass, was not significantly affected by the O3 treatments. In the 100-ppb treatment, light-saturated CO2 assimilation rates and chlorophyll content were significantly reduced, and the chlorophyll fluorescence parameter Fv/Fm was significantly reduced at times of high uptake rates and coincided with strong reductions of assimilation rates. O3 uptake was lowered in the 100-ppb treatment due to reduced gs. There was serious visible damage by the end of the exposure period in the 100-ppb treatment, while the treatment with 40 ppb O3 did not seem to cause any significant changes.  相似文献   

18.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

19.
. Growth (fresh weight) and morphogenesis (production of leaves, roots and shoots) of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) shoots were determined under atmospheres of 5%, 10%, 21%, 32%, or 43% O2 with either 350 or 10,000 µmol mol-1 CO2. Plants were grown in vitro on Murashige and Skoog salts, 3% sucrose and 0.8% agar under a 16/8-h (day/night) photoperiod with a light intensity of 180 µmol s-1 m-2. Growth and morphogenesis responses varied considerably for the two plant species tested depending on the level of O2 administered. Growth was considerably enhanced for both species under all O2 levels tested when 10,000 µmol mol-1 CO2 was added as compared to growth responses obtained at the same O2 levels tested with 350 µmol mol-1 CO2. Mint shoots exhibited high growth and morphogenesis responses for all O2 levels tested with 10,000 µmol mol-1 CO2. In contrast, thyme shoots exhibited enhanced growth and morphogenesis when cultured in ₁% O2 with 10,000 µmol mol-1 CO2 included compared to shoots cultured under lower O2 levels. Essential oil compositions (i.e. monoterpene, piperitenone oxide from mint and aromatic phenol, thymol from thyme) were analyzed from CH2Cl2 extracts via gas chromatography from the shoot portion of plants grown at all O2 levels. The highest levels of thymol were produced from thyme shoots cultured under 10% and 21% O2 with 10,000 µmol mol-1 CO2,and levels were considerably lower in shoots grown under either lower or higher O2 levels. Higher levels of piperitenone oxide were obtained from mint cultures grown under ₁% O2 with 10,000 µmol mol-1 CO2 compared to that obtained with lower O2 levels.  相似文献   

20.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号