首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.  相似文献   

2.
《Biophysical journal》2022,121(19):3698-3705
Cancer starts after initially healthy tissue cells accumulate several specific mutations or other genetic alterations. The dynamics of tumor formation is a very complex phenomenon due to multiple involved biochemical and biophysical processes. It leads to a very large number of possible pathways on the road to final fixation of all mutations that marks the beginning of the cancer, complicating the understanding of microscopic mechanisms of tumor formation. We present a new theoretical framework of analyzing the cancer initiation dynamics by exploring the properties of effective free-energy landscape of the process. It is argued that although there are many possible pathways for the fixation of all mutations in the system, there are only a few dominating pathways on the road to tumor formation. The theoretical approach is explicitly tested in the system with only two mutations using analytical calculations and Monte Carlo computer simulations. Excellent agreement with theoretical predictions is found for a large range of parameters, supporting our hypothesis and allowing us to better understand the mechanisms of cancer initiation. Our theoretical approach clarifies some important aspects of microscopic processes that lead to tumor formation.  相似文献   

3.
Neuronal activity depends on ion channels and biophysical processes that are strongly and differentially sensitive to physical variables such as temperature and pH. Nonetheless, neuronal oscillators can be surprisingly resilient to perturbations in these variables. We study a three-neuron pacemaker ensemble that drives the pyloric rhythm of the crab, Cancer borealis. These crabs routinely experience a number of global perturbations, including changes in temperature and pH. Although pyloric oscillations are robust to such changes, for sufficiently large deviations the rhythm reversibly breaks down. As temperature increases beyond a tipping point, oscillators transition to silence. Acidic pH deviations also show tipping points, with a reliable transition first to tonic spiking, then to silence. Surprisingly, robustness to perturbations in pH only moderately affects temperature robustness. Consistent with high animal-to-animal variability in biophysical circuit parameters, tipping points in temperature and pH vary across animals. However, the ordering and discrete classes of transitions at critical points are conserved. This implies that qualitative oscillator dynamics are preserved across animals despite high quantitative parameter variability. A universal model of bursting dynamics predicts the existence of these transition types and the order in which they occur.  相似文献   

4.
Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes. We discuss potential mechanisms underlying such machinery and the relevance of our approach, supporting previous detailed modeling studies and reflecting on the limitations of our methodology.  相似文献   

5.
An understanding of the nonlinear dynamics of bursting is fundamental in unraveling structure-function relations in nerve and secretory tissue. Bursting is characterized by alternations between phases of rapid spiking and slowly varying potential. A simple phase model is developed to study endogenous parabolic bursting, a class of burst activity observed experimentally in excitable membrane. The phase model is motivated by Rinzel and Lee's dissection of a model for neuronal parabolic bursting (J. Math. Biol. 25, 653–675 (1987)). Rapid spiking is represented canonically by a one-variable phase equation that is coupled bi-directionally to a two-variable slow system. The model is analyzed in the slow-variable phase plane, using quasi steady-state assumptions and formal averaging. We derive a reduced system to explore where the full model exhibits bursting, steady-states, continuous and modulated spiking. The relative speed of activation and inactivation of the slow variables strongly influences the burst pattern as well as other dynamics. We find conditions of the bistability of solutions between continuous spiking and bursting. Although the phase model is simple, we demonstrate that it captures many dynamical features of more complex biophysical models.This research was partially supported by NSF-JOINT RESEARCH grant 8803573, grant from CONCYT and DGAPA(UNAM) Mexico for H. Carrillo, and for the S. M. Baer NSF DMS-9107538  相似文献   

6.
State-space models of individual animal movement   总被引:4,自引:0,他引:4  
Detailed observation of the movement of individual animals offers the potential to understand spatial population processes as the ultimate consequence of individual behaviour, physiological constraints and fine-scale environmental influences. However, movement data from individuals are intrinsically stochastic and often subject to severe observation error. Linking such complex data to dynamical models of movement is a major challenge for animal ecology. Here, we review a statistical approach, state-space modelling, which involves changing how we analyse movement data and draw inferences about the behaviours that shape it. The statistical robustness and predictive ability of state-space models make them the most promising avenue towards a new type of movement ecology that fuses insights from the study of animal behaviour, biogeography and spatial population dynamics.  相似文献   

7.
The large number of variables involved in many biophysical models can conceal potentially simple dynamical mechanisms governing the properties of its solutions and the transitions between them as parameters are varied. To address this issue, we extend a novel model reduction method, based on “scales of dominance,” to multi-compartment models. We use this method to systematically reduce the dimension of a two-compartment conductance-based model of a crustacean pyloric dilator (PD) neuron that exhibits distinct modes of oscillation—tonic spiking, intermediate bursting and strong bursting. We divide trajectories into intervals dominated by a smaller number of variables, resulting in a locally reduced hybrid model whose dimension varies between two and six in different temporal regimes. The reduced model exhibits the same modes of oscillation as the 16 dimensional model over a comparable parameter range, and requires fewer ad hoc simplifications than a more traditional reduction to a single, globally valid model. The hybrid model highlights low-dimensional organizing structure in the dynamics of the PD neuron, and the dependence of its oscillations on parameters such as the maximal conductances of calcium currents. Our technique could be used to build hybrid low-dimensional models from any large multi-compartment conductance-based model in order to analyze the interactions between different modes of activity.  相似文献   

8.
Functional magnetic resonance imaging (fMRI) is used to investigate where the neural implementation of specific cognitive processes occurs. The standard approach uses linear convolution models that relate experimentally designed inputs, through a haemodynamic response function, to observed blood oxygen level dependent (BOLD) signals. Such models are, however, blind to the causal mechanisms that underlie observed BOLD responses. Recent developments have focused on how BOLD responses are generated and include biophysical input-state-output models with neural and haemodynamic state equations and models of functional integration that explain local dynamics through interactions with remote areas. Forward models with parameters at the neural level, such as dynamic causal modelling, combine both approaches, modelling the whole causal chain from external stimuli, via induced neural dynamics, to observed BOLD responses.  相似文献   

9.
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.  相似文献   

10.
11.
Fast spiking interneurons receive excitatory synaptic inputs from pyramidal cells and a relevant problem is to understand how these cells readout this information. Here this topic is investigated theoretically by using a biophysical modeling of a pair of coupled fast spiking interneuron models. The model predicts, in agreement with the experimental findings, that these cells are capable of transmitting pre-synaptic signals with high temporal precision and transferring high frequency inputs while preserving their relative timing. Moreover, it is shown that a pair of fast spiking interneurons, coupled through both inhibitory and electrical synapses, behaves as a coincidence detector. Lastly, to understand the mechanisms underlying these phenomena, a theoretical analysis is carried out by using a simpler modeling approach.  相似文献   

12.
1. To quantify the interactions between density-dependent, population regulation and density-independent limitation, we studied the time-series dynamics of an experimental laboratory insect microcosm system in which both environmental noise and resource limitation were manipulated. 2. A hierarchical Bayesian state-space approach is presented through which it is feasible to capture all sources of uncertainty, including observation error to accurately quantify the density dependence operating on the dynamics. 3. The regulatory processes underpinning the dynamics of two different bruchid beetles (Callosobruchus maculatus and Callosobruchus chinensis) are principally determined by environmental conditions, with fluctuations in abundance explained in terms of changes in overcompensatory dynamics and stochastic processes. 4. A general, stochastic population model is developed to explore the link between abundance fluctuations and the interaction between density dependence and noise. Taking account of time-lags in population regulation can substantially increase predicted population fluctuations resulting from underlying noise processes.  相似文献   

13.
We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment.During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting.During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable.We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.  相似文献   

14.
The composition and electrolyte concentration of the aqueous bathing environment have important consequences for many biological processes and can profoundly affect the behavior of biomolecules. Nevertheless, because of computational limitations, many molecular simulations of biophysical systems can be performed only at specific ionic conditions: either at nominally zero salt concentration, i.e., including only counterions enforcing the system’s electroneutrality, or at excessive salt concentrations. Here, we introduce an efficient molecular dynamics simulation approach for an atomistic DNA molecule at realistic physiological ionic conditions. The simulations are performed by employing the open-boundary molecular dynamics method that allows for simulation of open systems that can exchange mass and linear momentum with the environment. In our open-boundary molecular dynamics approach, the computational burden is drastically alleviated by embedding the DNA molecule in a mixed explicit/implicit salt-bathing solution. In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium. Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain. Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.  相似文献   

15.
Relationships between spiking-neuron and rate-based approaches to the dynamics of neural assemblies are explored by analyzing a model system that can be treated by both methods, with the rate-based method further averaged over multiple neurons to give a neural-field approach. The system consists of a chain of neurons, each with simple spiking dynamics that has a known rate-based equivalent. The neurons are linked by propagating activity that is described in terms of a spatial interaction strength with temporal delays that reflect distances between neurons; feedback via a separate delay loop is also included because such loops also exist in real brains. These interactions are described using a spatiotemporal coupling function that can carry either spikes or rates to provide coupling between neurons. Numerical simulation of corresponding spike- and rate-based methods with these compatible couplings then allows direct comparison between the dynamics arising from these approaches. The rate-based dynamics can reproduce two different forms of oscillation that are present in the spike-based model: spiking rates of individual neurons and network-induced modulations of spiking rate that occur if network interactions are sufficiently strong. Depending on conditions either mode of oscillation can dominate the spike-based dynamics and in some situations, particularly when the ratio of the frequencies of these two modes is integer or half-integer, the two can both be present and interact with each other.  相似文献   

16.
Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs) along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone) or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the expression of specific mechanisms controlling calcium influx/efflux.  相似文献   

17.
Dissection of a model for neuronal parabolic bursting   总被引:9,自引:0,他引:9  
We have obtained new insight into the mechanisms for bursting in a class of theoretical models. We study Plant's model [24] for Aplysia R-15 to illustrate our view of these so-called parabolic bursters, which are characterized by low spike frequency at the beginning and end of a burst. By identifying and analyzing the fast and slow processes we show how they interact mutually to generate spike activity and the slow wave which underlies the burst pattern. Our treatment is essentially the first step of a singular perturbation approach presented from a geometrical viewpoint and carried out numerically with AUTO [12]. We determine the solution sets (steady state and oscillatory) of the fast subsystem with the slow variables treated as parameters. These solutions form the slow manifold over which the slow dynamics then define a burst trajectory. During the silent phase of a burst, the solution trajectory lies approximately on the steady state branch of the slow manifold and during the active phase of spiking, the trajectory sweeps through the oscillation branch. The parabolic nature of bursting arises from the (degenerate) homoclinic transition between the oscillatory branch and the steady state branch. We show that, for some parameter values, the trajectory remains strictly on the steady state branch (to produce a resting steady state or a pure slow wave without spike activity) or strictly in the oscillatory branch (continuous spike activity without silent phases). Plant's model has two slow variables: a calcium conductance and the intracellular free calcium concentration, which activates a potassium conductance. We also show how bursting arises from an alternative mechanism in which calcium inactivates the calcium current and the potassium conductance is insensitive to calcium. These and other biophysical interpretations are discussed.  相似文献   

18.
M Vey  H Baron  T Weimer  A Gr?ner 《Biologicals》2002,30(3):187-196
Prions are not detectable in the blood or plasma of persons afflicted with classical or variant Creutzfeldt-Jakob disease, and they have never been shown to be transmitted by blood or plasma products. Despite the uncertainty as to the presence and biophysical properties of prions in plasma, prion removal studies have been conducted using brain homogenate or microsomes prepared from prion-infected rodent brains as model prions. In this study, we compare the partitioning of different prion spiking agents, having different biophysical properties, in the processes used for plasma protein purification. We have found that membrane-bound prion spiking agents partition similarly, whereas purified, unbound pathogenic prion proteins can have significantly different partitioning properties depending on the conditions in the production process. We conclude that prion spiking studies for the evaluation of prion reduction in plasma protein purification should employ spiking agents with different biophysical properties to mimic partitioning of the theoretical prion contaminant. This will give greater assurance as to the prion safety margins of the life-saving plasma protein therapeutics and excipients.  相似文献   

19.
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons’ burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center–surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.  相似文献   

20.
Despite the vital importance of our ability to accurately process and encode temporal information, the underlying neural mechanisms are largely unknown. We have previously described a theoretical framework that explains how temporal representations, similar to those reported in the visual cortex, can form in locally recurrent cortical networks as a function of reward modulated synaptic plasticity. This framework allows networks of both linear and spiking neurons to learn the temporal interval between a stimulus and paired reward signal presented during training. Here we use a mean field approach to analyze the dynamics of non-linear stochastic spiking neurons in a network trained to encode specific time intervals. This analysis explains how recurrent excitatory feedback allows a network structure to encode temporal representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号