首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Yozzo  David J.  Smith  David E. 《Hydrobiologia》1997,362(1-3):9-19
Previous research on intertidal nekton communities has identifiedimportant determinants of community structure and distribution; however, fewstudies have compared nekton utilization of disparate marsh habitats. Inthis study, abundance and distribution patterns of resident nekton werecompared between tidal freshwater marsh and salt marsh surfaces varying inflooding depth and duration. Nekton were collected in pit traps installedalong elevational transects at four marshes in coastal Virginia (twofreshwater, two saline) from April through November 1992–1993. Thedominant fish collected at all sites was the mummichog Fundulusheteroclitus. The daggerblade grass shrimp Palaemonetes pugio was thedominant nekton species collected at salt marsh sites, and was seasonallyabundant on tidal freshwater marshes. A positive correlation betweenflooding depth and nekton abundance was observed on salt marshes; anopposite pattern was observed on tidal freshwater marshes. Tidal floodingregime influences the abundance of resident nekton, however, the effect maybe confounded by other environmental variables, including variation insurface topography and seasonal presence or absence of submerged aquaticvegetation (SAV) in adjacent subtidal areas. In mid-Atlantic tidalfreshwater wetlands, SAV provides a predation refuge and forage site forearly life stages of marsh-dependent nekton, and several species utilizethis environment extensively. Salt marshes in this region generally lackdense SAV in adjacent subtidal creeks. Consequently, between-sitedifferences in species and size-specific marsh surface utilization byresident nekton were observed. Larvae and juveniles represented 79%and 59% of total fish collected at tidal freshwater and salt marshsites, respectively. The resident nekton communities of tidal freshwater andsalt marsh surfaces are characterized by a few ubiquitous species with broadenvironmental tolerances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

3.
Wetland degradation and loss is the result of a combination of natural causes and anthropogenic activities and is a serious problem in coastal Louisiana, where approximately 80% of the total US coastal wetland loss since the 1930's has occurred. One method currently used to address this wetland loss problem is structural marsh management, which is the use of levees and water control structures to control hydroperiod. The effects of structural marsh management on two managed marshes in Southern Louisiana (Unit 4 of the Rockefeller Wildlife Refuge and the Fina LaTerre Mitigation Bank) were evaluated by comparing the soils and the dominant emergent marsh vegetation (Spartina patens) of the two managed marshes with those of two nearby unmanaged marshes. Soil redox potential, water depth, interstitial water sulfide concentration, salinity, NH4-N and elemental concentrations of Na, K, Ca, Mg, P, Fe and Zn were measured four times during 1989 which was a drawdown year. Net and total CO2 exchange rate, primary productivity, leaf area, stem density, and live, dead and total aboveground biomass were also measured. The managed marsh at Rockefeller had lower water levels, significantly less reduced surface and 15 cm deep soils and significantly lower interstitial sulfide concentrations and salinity levels. Na, K, Mg and Ca concentrations reflected the same pattern as salinity. Live aboveground biomass, primary productivity and leaf area were 3–4 times greater in the managed marsh. This indicates that marsh management improved soil conditions and provided an environment favorable to more vigorous plant growth. The management scheme at Fina LaTerre was also successful at maintaining lower water levels than in the adjacent unmanaged area. However, surface soils were more reduced and interstitial salinity higher, on average, in the managed marsh indicating generally poorer water circulation. Primary productivity was 50% less and stem density, leaf area, net CO2 and total CO2 exchange rates were significantly lower in the managed marsh, compared to the nearby reference marsh. Conditions in the managed marsh indicate that the management scheme was not successful at improving soil conditions when compared to those in the adjacent unmanaged marsh. This study indicates that structural marsh management is not the universal answer to problems faced by Louisiana's coastal wetlands, but may be of value in specific situations.  相似文献   

4.
Nekton (fishes and decapod crustaceans) is an abundant and productive faunal component of salt marshes, yet nekton responses to tidal manipulations of New England salt marshes remain unclear. This study examined nekton use of a tidally restricted salt marsh in Narragansett, Rhode Island relative to an unrestricted marsh during summer. In addition, a before‐after‐control‐impact design was used to examine early responses of nekton to the reintroduction of natural tidal flushing. Species richness and densities of Cyprinodon variegatus, Lucania parva, Menidia beryllina, and Palaemonetes pugio were higher in the restricted marsh compared with the unrestricted marsh. The unrestricted marsh supported higher densities of Menidia menidia and Fundulus majalis. Mean lengths of Carcinus maenas and P. pugio were greater in the restricted marsh. Tidal restoration resulted in increased tidal flushing, salinity, and water depth in the restricted marsh. Densities of Fundulus heteroclitus, F. majalis, and Callinectes sapidus were higher after 2 years of restoration. Density of L. parva decreased after restoration, probably in response to a loss of macroalgal habitat. Species richness also decreased after 2 years, from 20.9 species when the marsh was restricted to 13.0 species. Total nekton density did not change with restoration, but shifts in community composition were evident. In this study restoration induced rapid changes in the composition, density, size, and distribution of nekton species, but additional monitoring is necessary to quantify longer‐term effects of salt marsh restoration on nekton.  相似文献   

5.
Densities of nekton and other fauna were measured inthree created salt marshes to examine habitatdevelopment rate. All three marshes were located onPelican Spit in Galveston Bay, Texas, USA and werecreated on dredged material from the Gulf IntracoastalWaterway. The youngest marsh was planted on 1-mcenters in July of 1992. At the time sampling wasinitiated in fall 1992, the marshes were 9, 5, andless than 1 year in age; sampling continued in thefall and spring through spring 1994. Animaldensities were measured within the vegetation at twoelevations using an enclosure sampler. In the fall of1992, 4 months following the planting of the 92Marsh,densities of most marsh organisms were lower in thismarsh compared with the older two marshes. Significantly lower densities were observed fordominant crustaceans (including three species of grassshrimps, two species of commercially-important penaeidshrimps, thinstripe hermit crabs Clibanarius vittatus,and juvenile blue crabs Callinectes sapidus), adominant fish (Gobionellus boleosoma), and thedominant mollusc (Littoraria irrorata). By the fallof 1993, however, densities of most nekton specieswere similar among the three created salt marshes. Incontrast, reduced densities of less mobile epifauna(C. vittatusand L. irrorata) persisted in the 92Marshthroughout the 2 years of sampling. The patterns ofnekton utilization exhibited in these marshes suggestthat the 92Marsh reached its maximum habitat supportfunction for these animals in less than 1 year. Comparisons of the older marshes with natural marshesin the bay system, however, suggest that all three ofthese created marshes are functioning at lower levelsthan natural marshes in terms of supporting productionof commercially important fishery species such aspenaeid shrimps and C. sapidus.  相似文献   

6.
Open marsh water management (OMWM) of salt marshes modifies grid‐ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid‐ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch‐plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non‐target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.  相似文献   

7.
In the oligohaline Alloway Creek watershed of the upper Delaware Bay, invasive Phragmites australis (Common reed; hereafter Phragmites) has been removed in an attempt to restore tidal marshes to pre‐invasion form and function. In order to determine the effects of Phragmites on nekton use of intertidal creeks and to evaluate the success of this restoration, intertidal creek nekton assemblages were sampled with weirs from May to November for 7 years (1999‐2005) in three marsh types: natural Spartina alterniflora (Smooth cordgrass; hereafter Spartina), sites treated for Phragmites removal (hereafter referred to as Treated), and invasive Phragmites marshes. Replicate intertidal creek collections in all three marsh types consisted primarily of resident nekton and were dominated by a relatively low number of ubiquitous intertidal species. The Treated marsh nekton assemblage was distinguished by greater abundances of most nekton, especially Fundulus heteroclitus (Mummichog). Phragmites had little impact on nekton use of intertidal creeks over this period as evidenced by similar nekton assemblages in the Spartina and Phragmites marshes for most years. Long‐term assemblage‐level analyses and nekton abundances indicated that the Treated marsh provided enhanced conditions for intertidal creek nekton. The response of intertidal creek nekton suggests that the stage of the restoration may influence the results of comparisons between the marsh types and should be considered when evaluating marsh restorations.  相似文献   

8.
The salt marshes of the Wadden Sea are important wintering areas for some species of granivorous passerines, which have declined considerably since the 1960s. We investigated the habitat choice of all wintering passerines in eight study areas in German salt marshes with special consideration of human impact on these habitats. Granivorous species that almost exclusively winter in salt marshes, Shorelark (Eremophila alpestris), Snow Bunting (Plectrophenax nivalis) and Twite (Carduelis flavirostris) were concentrated in the lower salt marsh vegetation and in the driftlines, while all other species preferred the high upper salt marsh communities, although Rock Pipits (Anthus petrosus littoralis) fed in muddy areas along ditches. Shorelarks switched habitat in conditions where seeds were scarce to feed instead on arthropods in upper salt marshes. Intensively sheep-grazed upper salt marshes resemble lower salt marshes in their vegetation and were therefore mainly visited by Shorelarks, Snow Buntings and Twites. In winter, the driftline is preferred by the two former species, while in autumn and spring more birds foraged in the salt marshes. Twites prefer to feed mainly on seeds of Salicornia. Areas with S. europaea are visited mainly in late autumn and early winter, while areas with S. stricta are used throughout the winter because of a steady supply of seeds. Several years after embankment, polders are hardly used any more by the lower salt marsh species as the habitat changes into freshwater marshes. Large embankment projects since the early 1960s have included salt marshes and intertidal flats, and the resultant loss of habitat is responsible for the decline of lower salt marsh species. For other passerine species the effects of reclamation are unknown. The effects of intensified grazing on the wintering populations of Shorelark, Snow Bunting and Twite are still unresolved. Although grazing supports lower salt marsh vegetation, the seed production per plant is much lower there and some important seed producers hardly occur. Since grazing was reduced and embankment projects have been stopped, the salt marsh areas (especially lower salt marshes) have increased and so have the wintering populations of Shorelark, Snow Bunting and Twite. For the other species, the consequences of habitat changes are unknown, although it is suggested that reduced grazing will support them. Reducing the human impact on salt marshes will, in the long run, probably lead to a natural salt marsh with much variety in elevation and in its corresponding vegetation and bird communities. Meanwhile, management by grazing might be required in parts of the salt marshes.  相似文献   

9.
Anthropogenic habitat fragmentation is increasingly problematic in both terrestrial and aquatic systems. Fragmentation reduces the size of habitat patches, so examining the effect of patch size on community structure can provide insight into the potential effects of fragmentation. In this study, we examined the effect of habitat size on the density of Spartina alterniflora shoots in tidal saltwater marshes, as well as on the two predominant macrofaunal species, the marsh periwinkle Littoraria irrorata and fiddler crabs Uca spp. We estimated the density of shoots in three different marsh habitats, (1) large island marshes, (2) small island marshes, and (3) large fringing marshes, in Indian Field Creek, York River, Chesapeake Bay. We manipulated shoot density in each of the marsh types to distinguish between the effects of marsh grass density and marsh type on crab and Littoraria densities in the system. We found significant differences in grass density among the three marsh types as well as significant species-specific effects of grass density, marsh type, and distance from edge on faunal abundance. Decreasing the shoot density resulted in a decrease in Littoraria density in the large marshes. Littoraria density increased with distance from edge in the small marshes and in the first 5 m of the fringing marshes, then decreased with distance from edge after 5 m in the fringing marshes. Shoot density had a negative effect on crabs in both the large and small marshes. These results suggest that fragmentation would have a negative effect on the community structure by lowering the densities of both the flora and fauna.  相似文献   

10.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

11.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

12.
Mosquito control measures have resulted in majorstructural alterations of many coastal marshes, withrelatively unknown consequences to larger ecosystemfunctioning. Parallel grid ditching and open marshwater management (OMWM) techniques are purposefullydesigned to alter the hydrological regime and therelative availability and/or characteristics ofstanding water on the marsh surface. With the growingrecognition of the important influence that habitatstructure and the configuration of the marsh-edgeboundary has on nekton utilization of salt marshsystems, the impact of mosquito control managementtechniques on the availability and quality of saltmarsh habitat deserves increased scrutiny. Usingdigital image processing techniques, we completed adetailed mapping effort for a 1800 ha study area inTuckerton, New Jersey to provide a picture ofsubtidal and intertidal habitat availability. Spatialanalysis techniques were used to quantify the relativeamount of habitat types and spatial pattern of theland-water interface under different managementregimes: parallel grid-ditched, OMWM and an unalteredreference. The parallel grid-ditched site had a muchlower incidence of marsh ponds which serve asimportant low tide and over-wintering refuge forcertain species of fish. In comparison, the OMWM sitehad a much greater amount of ponded water habitats.The grid-ditched site had a higher density of marshsurface-to-tidal water interface resulting in a lowermedian distance between the marsh interior and theadjacent tidal channel network. This study serves tobenchmark the habitat structure and spatial pattern ofa highly functioning natural marsh for use as areference site in regional wetland creation orrestoration efforts.  相似文献   

13.
The purpose of this paper was to examine the vegetative, sedimentary, nekton and hydrologic conditions pre‐restoration and the initial 2 years post‐restoration at a partially restricted macro‐tidal salt marsh site. Replacement of the culvert increased tidal flow by 88%. This was instrumental in altering the geomorphology of the site, facilitating the creation of new salt marsh pannes, expansion of existing pannes in the mid and high marsh zones, and expansion of the tidal creek network by incorporating relict agricultural ditches. In addition, the increase in area flooded resulted in a significant increase in nekton use, fulfilling the mandate of a federal habitat compensation program to increase and improve the overall availability and accessibility of fish habitat. The restoration of a more natural hydrological regime also resulted in the die‐off of freshwater and terrestrial vegetation along the upland edge of the marsh. Two years post‐restoration, Salicornia europea (glasswort) and Atriplex glabriuscula (marsh orache), were observed growing in these die‐back areas. Similar changes in the vegetation community structure were not observed at the reference site; however, the latter did contain higher species richness. This study represents the first comprehensive, quantitative analysis of ecological response to culvert replacement in a hypertidal ecosystem. These data will contribute to the development of long‐term data sets of pre‐ and post‐restoration, and reference marsh conditions to determine if a marsh is proceeding as expected, and to help with models that are aimed at predicting the response of marshes to tidal restoration at the upper end of the tidal spectrum.  相似文献   

14.
Salt marsh management often embraces diverse goals, ranging from the restoration of degraded marshes through re-introduction of tidal flow to the control of salt marsh mosquito production by altering marsh surface topography through Open Water Marsh Management (OMWM). However, rarely have these goals been incorporated in one project. Here we present the concept of Integrated Marsh Management (IMM), which combines the best management practices of salt marsh restoration and OMWM. Although IMM offers a comprehensive approach to ecological restoration and mosquito control, research evaluating this concept??s practical implementations has been inadequate. A long-term IMM project at Wertheim National Wildlife Refuge located in a highly urbanized watershed on Long Island, New York, USA was designed to fill this knowledge gap. A combination of restoration and OMWM techniques was employed at two treatment marshes, the results monitored before and after alterations, and compared to two adjacent control marshes. The treatment marshes experienced decreased mosquito production, reduced cover of the invasive common reed (Phragmites australis), expansion of native marsh vegetation, increased killifish and estuarine nekton species abundance, as well as increased avian species diversity and waterbird abundance. This demonstration project validated the IMM conceptual approach and may serve as a case study for similar IMM projects in the future.  相似文献   

15.
Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.  相似文献   

16.
Hunting foxes with hounds has been a countryside pursuit in Britain since the 17th Century, but its effect nationally on habitat management is little understood by the general public. A survey questionnaire was distributed to 163 mounted fox hunts of England and Wales to quantify their management practices in woodland and other habitat. Ninety-two hunts (56%), covering 75,514 km2, returned details on woodland management motivated by the improvement of their sport. The management details were verified via on-site visits for a sample of 200 woodlands. Following verification, the area of woodlands containing the management was conservatively estimated at 24,053 (±2241) ha, comprising 5.9% of woodland area within the whole of the area hunted by the 92 hunts. Management techniques included: tree planting, coppicing, felling, ride and perimeter management. A case study in five hunt countries in southern England examined, through the use of botanical survey and butterfly counts, the consequences of the hunt management on woodland ground flora and butterflies. Managed areas had, within the last 5 years, been coppiced and rides had been cleared. Vegetation cover in managed and unmanaged sites averaged 86% and 64%, respectively, and managed areas held on average 4 more plant species and a higher plant diversity than unmanaged areas (Shannon index of diversity: 2.25 vs. 1.95). Both the average number of butterfly species (2.2 vs. 0.3) and individuals counted (4.6 vs. 0.3) were higher in the managed than unmanaged sites.  相似文献   

17.
Piazza BP  La Peyre MK 《PloS one》2012,7(5):e37536
Resource pulses are thought to structure communities and food webs through the assembly of consumers. Aggregated consumers represent a high quality resource subsidy that becomes available for trophic transfer during and after the pulse. In estuarine systems, riverine flood pulses deliver large quantities of basal resources and make high quality habitat available for exploitation by consumers. These consumers represent a change in resources that may be available for trophic transfer. We quantified this increased consumer resource availability (nekton density, biomass, energy density) provided by riverine flood pulsing in Breton Sound, Louisiana, USA. We used water level differences between an area subject to two experimental riverine flood pulses (inflow) and a reference area not receiving inflow to identify the percentage of nekton standing stock and energy density that may be attributable solely to riverine pulsing and may represent a consumer resource subsidy. Riverine pulsing accounted for more than 60% of resident nekton density (ind m(-2)), biomass (g m(-2)), and energy density (cal m(-2)) on the flooded marsh surface during two experimental pulse events in 2005. Our results document the potential subsidy of resident nekton standing stock from a riverine flood pulse available for export to subtidal habitats. Given predicted large scale changes in river discharge globally, this approach could provide a useful tool for quantifying the effects of changes in riverine discharge on consumer resource availability.  相似文献   

18.
ABSTRACT As human development continues in coastal areas, shoreline properties adjacent to expansive tidal marsh habitat are increasingly used for access to coastal waterways via long piers (>30 m) over marsh habitat. These tidal wetlands provide breeding and foraging habitat for many marsh birds, which may be affected by the human disturbance associated with long piers. Our objectives were to determine the effect of long piers over vegetated tidal marshes on the relative abundance and species richness of marsh birds. We completed combined passive and callback surveys in tidal marsh habitat at 22 sites with long piers and 24 sites without long piers, May-July 2005–2006 in Worcester County, Maryland, USA. Pier sites had lower relative abundance and species richness of obligate marsh birds than nonpier sites. Pier sites had a greater relative abundance of gulls, terns, herons, and egrets than nonpier sites. Pier sites had fewer species of herons and egrets than at nonpier sites. The presence of long piers had no affect on facultative marsh birds. Long pier density was negatively related to obligate marsh bird relative abundance and species richness, and facultative marsh bird species richness, whereas it was positively related to the relative abundance and species richness of gulls and terns. Herons and egrets relative abundance and species richness were not related to long pier density. Obligate marsh birds were negatively affected by long piers, whereas herons, egrets, gulls, and terns appeared to benefit from perching opportunities. Based on the negative effects of long piers on obligate marsh birds, management should focus on reducing the presence and density of long piers in tidal marshes by requiring the removal of existing long piers, or reducing or eliminating permits for construction of new long piers.  相似文献   

19.
The most common modification of saltmarsh habitat for mosquito control in Australia is runnelling, a system of shallow channels increasing seawater exchange in pools high on the marsh. Local effects within the immediate vicinity of runnels were examined by testing the hypothesis that fish assemblages immediately alongside runnels differ from those further away. Nekton assemblages were sampled using pop nets in winter (May) and summer (December) on a saltmarsh in southeast Queensland, alongside runnels and further (30 m) away, at two distances from a mangrove-lined intertidal creek. Nekton assemblages were dominated numerically (50–80%) by one or two species of small fish (Ambassis marianus, Mugilogobius stigmaticus), and a commercially important prawn, Fenneropenaeus merguiensis. In winter, nekton assemblages alongside runnels were significantly different from those further away. Species richness, total nekton densities and densities of several individual species were higher away from runnels, but only at sites far from the creek. No differences in species richness or densities were found in summer. During both periods, nekton assemblages differed strongly with distance from the creek, with more species and higher densities of most species near the creek. For most species, the overall effect of runnelling appears to be a reduction in abundances in the immediate vicinity of runnels, at some times of year. This is probably related to lower prey availability near runnels. Given the extent of runnelling in some parts of Australia, even this local reduction in densities extending no more than 30 m from runnels means that nekton may be adversely affected over a large total area. The apparent influence of runnels on nekton densities highlights the potential effects of saltmarsh modification on non-target animals that should be considered as this management technique becomes more prevalent.  相似文献   

20.
The United States Department of Agriculture (USDA) authorized mid-contract management (MCM) in 2004 to restore and maintain plant species composition and structural diversity in aging Conservation Reserve Program (CRP) fields for the northern bobwhite (Colinus virginianus) and other grassland-dependent wildlife. We implemented 3 USDA-approved MCM regimes (i.e., strip disking, strip glyphosate spraying, and strip glyphosate spraying in combination with legume interseeding) in 60 tall fescue (Festuca arundinaceae) CRP monocultures in south-central Illinois, USA, during 2005–2008. We hypothesized that adult bobwhite relative densities and brood presence would increase following MCM that effectively restored early successional plant communities in otherwise monotypic stands of tall fescue. We estimated annual adult bobwhite relative densities and brood presence-absence in managed and unmanaged CRP. We modeled vegetation characteristics and landscape composition to identify factors influencing adult densities and brood presence. Adult relative densities were 2-fold greater in managed fields than in unmanaged fields, and were negatively correlated with greater percentages of grass cover. Adult densities were positively correlated with greater plant species diversity, and greater percentages of bare ground and legume cover. Logistic regression and odds ratio estimates indicated that fields managed with glyphosate-interseed and glyphosate treatments were 39.6% more likely to have broods than unmanaged CRP, whereas disked fields were 10.0% more likely than unmanaged CRP. These models indicated that the probability of brood presence was greater in fields with increased percentage of bare ground, greater plant species diversity, and decreased percentage of grass and litter cover. These findings suggest that a 3-year rotation of glyphosate or glyphosate-interseed treatments can enhance habitat conditions for adult bobwhites and broods in CRP tall fescue monocultures. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号