首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cells (EC) synthesize platelet-activating factor (PAF) when stimulated with agonists that bind to cell-surface receptors. We examined events that link receptor binding to synthesis of PAF by EC. Bovine EC stimulated with agonists that interact with specific cell-surface receptors accumulated PAF only in the presence of extracellular calcium. Hormonal stimulation of EC resulted in Ca2+ entry characteristic of that seen with receptor-operated calcium channels; Indo-1 measurements demonstrated that this inward flux of Ca2+ caused prolonged elevated levels of intracellular Ca2+. EC were exposed to melittin or theta toxin from Clostridium perfringens (pore-forming peptides that increase the permeability of the plasma membrane for small molecules) resulting in an inward flux of Ca2+ and accumulation of PAF. Ca2+ appears to be regulatory for PAF production at the level of phospholipase A2-mediated production of the PAF precursor 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine, as Ca2+ was required for the stimulated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. PAF accumulation in EC is also regulated by protein kinase C. Pretreatment of EC with phorbol esters that activate protein kinase C or with dioctanoylglycerol, followed by stimulation, resulted in a 2-fold increase in stimulated PAF production. The regulatory effect of protein kinase C also appears to be at a phospholipase A2-mediated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine.  相似文献   

2.
Activation of protease-activated receptor-1 (PAR-1) produces a dual action, apamin-sensitive relaxation followed by contraction, in the rat duodenal smooth muscle, which is partially dependent on activation of L-type Ca2+ channels, protein kinase C (PKC) or tyrosine kinase (TK), and resistant to tetrodotoxin. The present study further characterized the PAR-1-mediated duodenal responses. Removal of extracellular Ca2+ as well as SK&F96365 reduced the contraction due to the PAR-1 agonist TFLLR-NH2 (TFp-NH2) by 60-80% that was similar to the extent of the inhibition by nifedipine. Lowering of the extracellular Na+ concentration, but not IAA-94, a Cl- channel inhibitor, reduced both the PAR-1-mediated contraction and relaxation by about 50%. U73122, a phospholipase C (PLC) inhibitor, or wortmannin, a phosphatidyl inositol 3'-kinase (PI3K) inhibitor, significantly reduced the PAR-1-mediated contraction, but not the relaxation, by itself, as the PKC inhibitor GF109203X and the TK inhibitor genistein did. U73122 or wortmannin, like GF109203X, when applied in combination with genistein, significantly reduced the PAR-1-mediated relaxation. The relaxation was resistant to antagonists of PACAP receptors, VIP receptors and P2 purinoceptors. Thus, the PAR-1-mediated contraction is considered to be dependent on intracellular and extracellular Ca2+, the influx of the latter being induced through activation of L-type Ca2+ channels triggered by the enhanced Na+ permeability, and that PLC and PI3K, in addition to PKC and TK, are involved in the PAR-1-mediated dual responses. Furthermore, non-adrenergic, non-cholinergic nerve neurotransmitter candidates that may modulate K+ channels do not appear to contribute to the relaxation by PAR-1 activation.  相似文献   

3.
Human bladder contraction mainly depends on Ca2+ influx via L-type voltage-gated Ca2+ channels and on RhoA/Rho kinase contractile signaling, which is upregulated in overactive bladder (OAB). Elocalcitol is a vitamin D receptor agonist inhibiting RhoA/Rho kinase signaling in rat and human bladder. Since in the normal bladder from Sprague-Dawley rats elocalcitol treatment delayed the carbachol-induced contraction without changing maximal responsiveness and increased sensitivity to the L-type Ca2+ channel antagonist isradipine, we investigated whether elocalcitol upregulated L-type Ca2+ channels in human bladder smooth muscle cells (hBCs). In hBCs, elocalcitol induced a rapid increase in intracellular [Ca2+], which was abrogated by the L-type Ca2+ channel antagonist verapamil. Moreover, hBCs exhibited L-type voltage-activated Ca2+ currents (I Ca), which were selectively blocked by isradipine and verapamil and enhanced by the selective L-type agonist BAY K 8644. Addition of elocalcitol (10(-7) M) increased L-type I Ca size and specific conductance by inducing faster activation and inactivation kinetics than control and BAY K 8644, while determining a significant negative shift of the activation and inactivation curves, comparable to BAY K 8644. These effects were strengthened in long-term treated hBCs with elocalcitol (10(-8) M, 48 h), which also showed increased mRNA and protein expression of pore-forming L-type alpha(1C)-subunit. In the bladder from Sprague-Dawley rats, BAY K 8644 induced a dose-dependent increase in tension, which was significantly enhanced by elocalcitol treatment (30 microg.kg(-1).day(-1), 2 wk). In conclusion, elocalcitol upregulated Ca2+ entry through L-type Ca2+ channels in hBCs, thus balancing its inhibitory effect on RhoA/Rho kinase signaling and suggesting its possible efficacy for the modulation of bladder contractile mechanisms.  相似文献   

4.
Pituitary corticotroph cells generate repetitive action potentials and associated Ca2+ transients in response to the agonist corticotropin releasing hormone (CRH). There is indirect evidence suggesting that the agonist, by way of complex intracellular mechanisms, modulates the voltage sensitivity of the L-type Ca2+ channels embedded in the plasma membrane. We have previously constructed a Hodgkin-Huxley-type model of this process, which indicated that an increase in the L-type Ca2+ current is sufficient to generate repetitive action potentials (LeBeau et al. (1997). Biophys. J.73, 1263-1275). CRH is also believed to inhibit an inwardly rectifying K+ current. In this paper, we have found that a CRH-induced inhibition of the inwardly rectifying K+ current increases the model action potential firing frequency, [Ca2+]i transients and membrane excitability. This dual modulatory action of CRH on inward rectifier and voltage-gated Ca2+ channels better describes the observed CRH-induced effects. This structural alteration to the model along with parameter changes bring the model firing frequency in line with experimental data. We also show that the model exhibits experimentally observed bursting behaviour, where the depolarization spike is followed by small oscillations in the membrane potential.  相似文献   

5.
We evaluated the effects of protease-activated receptor (PAR)-2 on spontaneous myometrial contraction (SMC) in isolated term pregnant myometrial strips of rat, and elucidated the cellular mechanisms of this effect using a conventional voltage-clamp method. In isometric tension measurements, trypsin and SL-NH(2), PAR-2 agonists, significantly augmented SMC in frequency and amplitude; however, boiled trypsin (BT) and LR-NH(2) had no effect on SMC. These stimulatory effects of PAR-2 agonists on SMC were nearly completely occluded by pre-application of Bay K 8644, an L-type voltage-gated Ca(2+) channel activator, thus showing the involvement of L-type voltage-gated Ca(2+) channels in PAR-2-induced augmentation of SMC. In addition, PAR-2 agonists significantly enhanced L-type voltage-gated Ca(2+) currents (I(Ca-L)), as measured by a conventional voltage-clamp method, and this increase was primarily mediated by activation of phospholipase C (PLC) and protein kinase C (PKC) via G-protein activation. Taken together, we have demonstrated that PAR-2 may actively regulate SMC during pregnancy by modulating Ca(2+) influx through L-type voltage-gated Ca(2+) channels, and that this increase of I(Ca-L) may be primarily mediated by PLC and PKC activation. These results suggest a cellular mechanism for the pathophysiological effects of PAR-2 activation on myometrial contractility during pregnancy and provide basic and theoretical information about developing new agents for the treatment of premature labor and other obstetric complications.  相似文献   

6.
7.
An undefined property of L-type Ca2+ channels is believed to underlie the unique phenotype of hibernating hearts. Therefore, L-type Ca2+ channels in single cardiomyocytes isolated from hibernating versus awake ground-squirrels (Citellus undulatus) were compared using the perforated mode of the patch-clamp technique, and interpreted by way of a kinetic model of Ca2+ channel behavior based upon the concept of independence of the activation and inactivation processes. We find that, in hibernating ground-squirrels, the cardiac L-type Ca2+ current is lower in magnitude when compared to awake animals. Both in the awake or hibernating states, kinetics of L-type Ca2+ channels could be described by a d2f1(2)f2 model with an activation and two inactivation processes. The activation (or d) process relates to the movement of the gating charge. The slow (or f1) inactivation is associated with movement of gating charge and is current-dependent. The rapid (or f2) inactivation is a complex process which cannot be represented as a single-step conformational transition induced by the gating charge movement, and is regulated by beta-adrenoceptor stimulation. When compared to awake animals, the kinetic properties of Ca2+ channels from hibernating ground-squirrels differed in the following parameters: (1) pronounced shift (15-20 mV) toward depolarization in the normalized conductance of both inactivation components, and moderate shift in the activation component; (2) 1.5-2-fold greater time constants; and (3) two-fold greater activation gating charge. Thus, L-type Ca2+ channels apparently switch their phenotype during the hibernating transition. Stimulation of beta-adrenoceptors by isoproterenol, reversed the hibernating kinetic- (but not amplitude-) phenotype toward the awake type. Therefore, an aberrance in the beta-adrenergic system can not fully explain the observed changes in the L-type Ca2+ current. This suggests that during hibernation additional mechanisms may reduce the single Ca2+ channel-conductance and/or keep a fraction of the cardiac L-type Ca2+ channel population in a non-active state.  相似文献   

8.
Current scientific literature generally attributes the vasoconstrictor effects of [Arg(8)]vasopressin (AVP) to the activation of phospholipase C (PLC) and consequent release of Ca(2+) from the sarcoplasmic reticulum. However, half-maximal activation of PLC requires nanomolar concentrations of AVP, whereas vasoconstriction occurs when circulating concentrations of AVP are orders of magnitude lower. Using cultured vascular smooth muscle cells, we previously identified a novel Ca(2+) signaling pathway activated by 10-100 pM AVP. This pathway is distinguished from the PLC pathway by its dependence on protein kinase C (PKC) and L-type voltage-sensitive Ca(2+) channels (VSCC). In the present study, we used isolated, pressurized rat mesenteric arteries to examine the contributions of these different Ca(2+) signaling mechanisms to AVP-induced vasoconstriction. AVP (10(-14)-10(-6) M) induced a concentration-dependent constriction of arteries that was reversible with a V(1a) vasopressin receptor antagonist. Half-maximal vasoconstriction at 30 pM AVP was prevented by blockade of VSCC with verapamil (10 microM) or by PKC inhibition with calphostin-C (250 nM) or Ro-31-8220 (1 microM). In contrast, acute vasoconstriction induced by 10 nM AVP (maximal) was insensitive to blockade of VSCC or PKC inhibition. However, after 30 min, the remaining vasoconstriction induced by 10 nM AVP was partially dependent on PKC activation and almost fully dependent on VSCC. These results suggest that different Ca(2+) signaling mechanisms contribute to AVP-induced vasoconstriction over different ranges of AVP concentration. Vasoconstrictor actions of AVP, at concentrations of AVP found within the systemic circulation, utilize a Ca(2+) signaling pathway that is dependent on PKC activation and can be inhibited by Ca(2+) channel blockers.  相似文献   

9.
10.
P2X7 receptors are ATP-gated ion channels and play important roles in microglial functions in the brain. Activation of P2X7 receptors by ATP or its agonist BzATP induces Ca2+ influx from extracellular space, followed by the formation of non-selective membrane pores that is permeable to larger molecules, such as fluorescent dye. To determine whether phospholipase C (PLC) is involved in the activation of P2X7 receptors in microglial cells, U73122, a specific inhibitor of PLC, and its inactive analogue U73343 were examined on ATP and BzATP-induced channel and pore formation in an immortalized C57BL/6 mouse microglial cell line (MG6-1). ATP induced both a transient and a sustained increase in the intracellular Ca2+ concentration ([Ca2+]i) in MG6-1 cells, whereas BzATP evoked only a sustained increase. U73122, but not U73343, inhibited the transient [Ca2+]i increase involving Ca2+ release from intracellular stores through PLC activation. In contrast, both U73122 and U73343 inhibited the sustained [Ca2+]i increase either prior or after the activation of P2X7 receptor channels by ATP and BzATP. In addition, these U-compounds inhibited the influx of ethidium bromide induced by ATP and BzATP, suggesting possible PLC-independent blockage of the process of P2X7-associated channel and pore formations by U-compounds in C57BL/6 mouse microglial cells.  相似文献   

11.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

12.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

13.
An early cellular response of osteoblasts to swelling is plasma membrane depolarization, accompanied by a transient increase in intracellular calcium ([Ca2+]i), which initiates regulatory volume decrease (RVD). The authors have previously demonstrated a hypotonically induced depolarization of the osteoblast plasma membrane, sufficient to open L-type Ca channels and mediate Ca2+ influx. Herein is described the initiation of RVD in UMR-106.01 cells, mediated by hypotonically induced [Ca2+]i transients resulting from the activation of specific isoforms of L-type Ca channels. The authors further demonstrate that substrate interaction determines which specific alpha1 Ca channel subunit isoform predominates and mediates Ca2+ entry and RVD. Swelling-induced [Ca2+]i transients, and RVD in cells grown on a type I collagen matrix, are inhibited by removal of Ca from extracellular solutions, dihydropyridines, and antisense oligodeoxynucleotides directed exclusively to the alpha1C isoform of the L-type Ca channel. Ca2+ transients and RVD in cells grown on untreated glass cover slips were inhibited by similar maneuvers, but only by antisense oligodeoxynucleotides directed to the alpha1S isoform of the L-type Ca channel. This represents the first molecular identification of the Ca channels that transduce the initiation signal for RVD by osteoblastic cells.  相似文献   

14.
Experiments were carried out on the algal cells with removed tonoplast using both continuous intracellular perfusion and voltage clamp on plasmalemma. The transient plasmalemma current induced by depolarization disappeared upon perfusion with the Ca2+-chelating agent, EGTA, since the voltage-dependent calcium channels lost their ability to activate. Subsequent replacement of the perfusion medium containing EGTA by another with Ca2+ for clamped plasmalemma (-100 mV) induced an inward C1- current which showed both activation and inactivation. The maximal amplitude of the current at [C1-]in = 15 mmol/l (which is similar to that in native cells) was approximately twice that in electrically excited cell in vivo. The inactivation of C1 channels in the presence of internal Ca2+ was irreversible and had a time constant of 1-3 min. This supports our earlier suggestion (Lunevsky et al. 1983) that the inactivation of C1 channels in an intact cell (with a time constant of 1-3 s) is due to a decrease in Ca2+ concentration rather than to the activity of their own inactivation mechanism. The C1 channel selectivity sequence was following: C1- much greater than CH3SO-4 approximately equal to K+ much greater than SO2-4 (PK/PSO4 approximately 10). Activation of one half the channels occurs at a Ca2+ concentration of 2 X 10(-5) mol/l. Sr2+ also (though to a lesser extent) activated C1 channels but had to be present in a much more higher concentration than Ca2+. Mg2+ and Ba2+ appeared ineffective. Ca2+ activation did not, apparently, require participation of water-soluble intermediator including ATP. Thus, C1 channel functioning is controlled by Ca2+-, Sr2+-sensitive elements of the subplasmalemma cytoskeleton.  相似文献   

15.
Voltage-dependent Ca2+ channels of the aortic cell line A7r5 were studied using 45Ca2+ flux experiments. Ca2+ channels which have been studied belong to the L-type and are very sensitive to inhibitors and activators in the 1,4-dihydropyridine series as well as to (-)desmethoxyverapamil and d-cis-diltiazem. L-type Ca2+ channels in these smooth muscle cells are not affected by cyclic 8-bromo-AMP and dibutyryl cyclic AMP. However, the activity of these channels is strongly depressed after treatment with diacylglycerols (1-oleyl 2-acetylglycerol and 1,2-dioctanoylglycerol). Phorbol esters, which like diacylglycerols are well-known activators of protein kinase C (the Ca2+- and phospholipid-dependent enzyme), inhibit 70% of Ca2+ channel activity (K0.5 = 25 nM for phorbol 12-myristate 13-acetate and K0.5 = 200 nM for phorbol 12,13-dibutyrate). Phorbol esters that are inactive on kinase C are without effect on Ca2+ channel activity. [Arg8]Vasopressin and bombesin, two peptides that are well known for their action on polyphosphoinositide metabolism, inhibit Ca2+ channel activity to the same extent as active phorbol esters (65-70%). Oxytocin has the same type of effect presumably by acting at the V1-receptor. Both effects of [Arg8]vasopressin and oxytocin are suppressed by [1-(beta-mercapto-beta,beta-diethylpropionic acid)4-valine]arginine vasopressin, a specific vasopressin antagonist at the V1-receptor.  相似文献   

16.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

17.
18.
Hardie RC 《Cell calcium》2005,38(6):547-556
In vivo light-induced and basal hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC) were monitored in Drosophila photoreceptors using genetically targeted PIP2-sensitive ion channels (Kir2.1) as electrophysiological biosensors for PIP2. In cells loaded via patch pipettes with varying concentrations of Ca2+ buffered by 4 mM free BAPTA, light-induced PLC activity, showed an apparent bell-shaped dependence on free Ca2+ (maximum at "100 nM", approximately 10-fold inhibition at <10nM or approximately 1 microM). However, experiments where the total BAPTA concentration was varied whilst free [Ca2+] was maintained constant indicated that inhibition of PLC at higher (>100 nM) nominal Ca2+ concentrations was independent of Ca2+ and due to inhibition by BAPTA itself (IC50 approximately 8 mM). Di-bromo BAPTA (DBB) was yet more potent at inhibiting PLC activity (IC50 approximately 1mM). Both BAPTA and DBB also appeared to induce a modest, but less severe inhibition of basal PLC activity. By contrast, EGTA, failed to inhibit PLC activity when pre-loaded with Ca2+, but like BAPTA, inhibited both basal and light-induced PLC activity when introduced without Ca2+. The results indicate that both BAPTA and DBB inhibit PLC activity independently of their role as Ca2+ chelators, whilst non-physiologically low (<100 nM) levels of Ca2+ suppress both basal and light-induced PLC activity.  相似文献   

19.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

20.
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号