首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.  相似文献   

2.
The meront stage of the oyster protozoan parasite, Perkinsus marinus, cultivated in two media with different fatty acid profiles was analyzed for its fatty acid and lipid class composition. The composition of fatty acids in the prezoosporangium stage of the parasite as well as that of the host oyster were investigated. Although the lipid class composition of meronts was dominated by phospholipids and triacylglycerol, there was no triaclgycerol detected in either culture medium. Despite the difference in fatty acid composition of the two media, the fatty acid composition of meronts in each medium was dominated by 14:0, 16:0, 18:0, 18:1(n-9), 20: (n-9), 18:2(n-6) and 20:4(n-6), a profile that differed from its host. The quantities of total lipids and fatty acids in meronts increased as the number of meronts increased and far exceeded the initial amounts in the media and in the initial cell inoculum. The meronts harvested 25 d post-inoculation, had about 3 to 6 times higher total lipids and 4 to 13 times higher fatty acids than the amounts contained in the media. The fatty acid profiles of both prezoosporangia and oysters resembled each other and consisted primarily of 16:0, 20:4(n-6), 20:5(n-3), 22:2delta7,15, and 22:6(n-3). These results indicate that during meront proliferation, the parasite synthesizes certain fatty acids and lipid classes. For development from meront to prezoosporangium, the parasite may rely on its host for lipid resources.  相似文献   

3.
The lipids of the adults and of several immature stages of the southwestern corn borer, Diatraea grandiosella, were studied after they were fed natural corn stalks or artificial diets. Linoleic acid (18:2) was the major fatty acid of the neutral lipids in both the natural and the artificial diets, but aleic acid (18:1) was the principal neutral lipid in all insect stages. Also, linoleic acid and oleic acid were the principal acids in the insect phospholipids of all stages. The content of linoleic acid in the natural diet was also high, but that in the artificial diet appeared to be much too low for insect requirements. Phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) were the major phospholipids in all growth stages. Thus, in larvae diapausing in the field, the unsaturated fatty acid content of PC was 59·3 per cent, primarily 16:1 and 18:1, and PE was 87·4 per cent, primarily 18:1, 18:2, and 18:3, and the fatty acids in the number 1- and 2-positions of PC were 53·6 and 97·2 per cent unsaturated, respectively. The haemolymph of diapausing southwestern corn borer larvae contained primarily glycerides but also had some PC and PE. Fat body from diapausing larvae contained primarily 16:0, 16:1, and 18:1 in a ratio of 1 : 1 : 2. Thus lipids of the southwestern corn borer do not reflect dietary lipids as closely as do other insects studied.  相似文献   

4.
Phospholipid uptake by Plasmodium knowlesi infected erythrocytes   总被引:2,自引:0,他引:2  
The uptake of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in Plasmodium knowlesi infected erythrocytes has been studied. Whereas uptake of phospholipids, in the absence of phospholipid transfer proteins, is negligible in control cells, the infected cells can incorporate considerable amounts of added phospholipids. The uptake is enhanced by the presence of lipid transfer proteins. Doubly labeled [3H]oleate, [14C]choline) PC does not undergo any appreciable remodelling following uptake, which strongly suggests that plasma PC is used as such for the biogenesis of the parasite membranes. Transport of extracellularly offered PS and PE towards the intraerythrocytic parasite and utilization of these lipids by the parasite are confirmed by the observation that these lipids are converted into respectively PE and PC. The extent and rate of these conversions depend on the way the phospholipids are introduced into the infected cells.  相似文献   

5.
The transbilayer movement of fluorescent and isotopically labeled analogs of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) from the outer to the inner leaflet (flip) and from the inner to the outer leaflet (flop) of human red blood cells (RBC) was examined. The inward movement of 1-oleoyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole-aminocaproyl)- (C6-NBD-), 1-oleoyl-2-(N-(3-(3-[125I]iodo-4-hydroxyphenyl)propionyl)aminocaproyl)- (C6-125I-), or 1-oleoyl-2-(N-(3-3-[125I]iodo-4-azido-phenyl)propionyl)aminocaproyl- (C6-125I-N3-) analogs of PC and PE were relatively slow. In contrast, all analogs of PS and PE analogs containing aminododecanoic acid (C12 lipids) were rapidly transported to the cell's inner leaflet. Analysis of 125I-N3 lipids cross-linked to membrane proteins revealed labeling of 32-kDa Rh polypeptides that was dependent on the lipid's capacity to be transported to the inner leaflet but was independent of lipid species. To investigate whether lipids could also be transported from the inner to the outer leaflet, lipid probes residing exclusively in the inner leaflet were monitored for their appearance in the outer leaflet. Lipid movement could not be detected at 0 degrees C. At 37 degrees C, however, approximately 70% of the PC, 40% of the PE, and 15% of the PS redistributed to the cells outer leaflet, thereby attaining their normal asymmetric distribution. Continuous incubation in the presence of bovine serum albumin depleted the cells of the analogs (t1/2 approximately 1.5 h) in a manner that was independent of lipid species. Similar to the inward movement of aminophospholipids, the outward movement of PC, PE, and PS was ATP-dependent and could be blocked by oxidation of membrane sulfhydryls and by the histidine reagent bromophenacyl bromide. Evidence is presented which suggests that the outward movement of lipids is an intrinsic property of the cells unrelated to compensatory mechanisms due to an imbalance in lipid distribution.  相似文献   

6.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

7.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

8.
The composition of red blood cell membrane and plasma phospholipids has been analyzed in patients with hyperlipidemias. In red cells of patients with elevated levels of triacylglycerol-rich lipoproteins, phosphatidylcholine (PC) was raised and sphingomyelin (SM) reduced, resulting in a 20% increase of the membrane PC/SM ratio. In plasma phospholipids of these patients PC and SM levels were also higher and lower, respectively and the plasma PC/SM ratio was elevated by more than 50%. Close positive correlations between plasma and membrane phospholipids were obtained for PC, SM and the PC/SM ratio in normolipidemic and hyperlipidemic donors. Plasmalogen phosphatidylethanolamine (PE), a supposed endogenous protector against lipid oxidation, was reduced by about 20% in red cell membrane lipids in hyperlipidemic patients. Also plasmalogen-PE in plasma tended to be reduced in hyperlipidemic donors. Plasma HDL levels were positively related to the content of plasmalogen PE in the red cell membrane. In conclusion, there are closely related increases in PC/SM ratios in plasma and the red cell membrane in patients with elevated levels of triacylglycerol-rich lipoproteins. It is speculated that decreases in red cell membrane plasmalogen-PE in hyperlipidemic patients could be related to impaired antioxidant protection, possibly as a consequence of reductions in plasma HDL levels.  相似文献   

9.
The content and composition of phospholipids and triacylglycerols (TAGs) in Bufo arenarum oocytes in stages III and IV of their oogenesis were studied. The total amount of phospholipids in stage IV oocytes is 0.5-fold higher than in stage III oocytes. In both cases, the main phospholipids are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A striking observation concerns the high level of diphosphatidylglycerol (DPG) in stage III oocytes, which could be indicative of a relatively larger mitochondrial population with respect to other oogenetic stages. A net increase in sphingomyelin content was found during oogenesis. This fact could be related to the role of this phospholipid in the signal transductional pathways. In PC, palmitic (16:0), linoleic (18:2) and oleic (18:1) are the major fatty acids for both types of oocytes, while in PE the main acyl groups are 18:1, 16:0, arachidonic acid (20:4n6) and 18:2. PE is more unsaturated than PC and both phospholipids are more unsaturated in stage III oocytes than in stage IV oocytes. The amount of triacylglycerols is 0.3-fold higher in stage IV oocytes than in stage III oocytes. In both stages, the main fatty acids are 18:2, 18:1 and 16:0. During oogenesis, a significant increase in 18:1 and 18:3n3, and a decrease in 18:2 of TAG were found. The unsaturation index of TAGs from stage IV oocytes is higher than that from stage III oocytes. The TAG increase during oogenesis is consistent with the putative use of these lipids as a source of energy in embryo development.  相似文献   

10.
Lipid content and class in the Northern krill Meganyctiphanes norvegica (digestive gland, stomach, gonad, fat body, abdomen) was investigated and correlated with sex and reproductive stage. Ready to spawn females, have high lipid content in ovaries, while in males and spent females, the major site of lipid deposits was the digestive gland, followed by the fat body. These differences among spawning and spent females are indicative of strong interactions between the ovary and digestive gland and the ovary and fat body during vitellogenesis. Triacylglycerols (TAG) were the major neutral lipid class with high levels in the digestive gland. The major phospholipid was phosphatidylcholine (PC) particularly in the muscular tissue of the abdomen. Phosphatidyl-ethanolamine (PE) and -serine-inositol (PS-PI), were present at intermediate levels. Reproductive males were depleted in TAG and diacylglycerols (DAG) in the digestive gland, gonad and fat body, and had 4 times lower cholesterol in the gonad than ready to spawn females. Furthermore, ready to spawn females had in the ovary higher amounts of TAG, DAG and phospholipids (PC, PE, PS-PI) than spent females. Linear relationships between lipid content and main lipid class (TAG, PC, PE, PS-PI) in different fractions of males and ready to spawn females showed that: (1). TAG was stored for both sexes in all cephalothorax fractions with highest values in the digestive gland and ovary fluid; (2). PC was accumulated for both sexes in the fat body and the gonad with a higher slope for females, with the highest values in the ovary fluid and in the abdomen of males and that (3). PS-PI was stored only in the ovary and abdomen of mature females. These results are discussed in terms of the strategy developed by Meganyctiphanes norvegica to allocate lipids to the next generation for optimised embryogenesis.  相似文献   

11.
To better understand the lipid requirements of Giardia lamblia trophozoites and the mechanisms of lipid uptake, we supplemented serum-free TYI-S-33 medium with lipids incorporated into different lipid carriers. We found that serum lipoproteins, β-cyclodextrins, and bile salts are able to supply cholesterol and phospholipids to Giardia and to support the multiplication of the parasite in vitro. The growth rates obtained with different lipoproteins or bile salts and lipid mixtures were similar to that in standard culture medium containing serum. Pulse labelling experiments using fluorescent lipid analogs demonstrated that Giardia can take up lipids from lipoproteins, β-cyclodextrins, or bile salt micelles, but with different kinetics, and that bile salts greatly facilitated lipid transfer from lipoproteins and cyclodextrins to the parasite surface. The binding of different radioiodinated lipoprotein classes to the trophozoite surface, inhibition of lipoprotein interiorization at 4°C or by cytochalasin D, and incorporation studies using fluorescent LDL suggested that a small component of lipid uptake by trophozoites was likely due to endocytosis of lipoproteins.  相似文献   

12.
T Nomura  K Kurihara 《Biochemistry》1987,26(19):6141-6145
In a previous paper [Nomura, T., & Kurihara, K. (1987) Biochemistry (preceding paper in this issue)], we showed that azolectin liposomes are depolarized by various odorants and there is a good correlation between the responses in the liposomes and the frog or porcine olfactory responses. In this study, we examined effects of changed lipid composition on responses of liposomes to various odorants. The membrane potential changes in response to odorants were monitored with the fluorescent dye 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. Egg phosphatidylcholine (PC) liposomes showed depolarizing responses to nine odorants among ten odorants tested. The magnitudes of depolarization by alcohols were similar to those in azolectin liposomes, but those by other odorants were much less than those in azolectin liposomes. Addition of sphingomyelin (SM) to PC led to an increase in the magnitude of depolarization by most odorants. Addition of phosphatidylethanolamine (PE) to PC (PE/PC = 0.25) led to depolarizing responses to four odorants among six odorants tested, and a further increase in PE content (PE/PC = 0.54) led to depolarizing responses only to two odorants. Addition of SM to the lipids of this composition of PC and PE [SM/(PC + PE) = 0.22] led to depolarizing responses to four odorants again. Liposomes made of a mixture of SM, PE, and PC exhibited depolarizing responses to four odorants tested, and addition of cholesterol to the lipids [cholesterol/(PC + PE + SM) = 0.05 and 0.11] led to depolarizing responses only to two and one odorant, respectively. Thus, changes in lipid composition of liposomes led to great changes in specificity of the responses to odorants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
《Insect Biochemistry》1991,21(7):809-814
The fatty acid compositions were determined for total lipids, triacylglycerols, phospholipids and four phospholipid fractions, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine/phosphatidylinositol (PS/PI) and cardiolipin (CA) obtained from hemocytes and cell-free serum from second day, fifth instar larvae of the tobacco hornworm Manduca sexta and the standard Manduca rearing medium. The hemocyte fatty acid profiles were considerably different from the profiles of the medium the insects were reared on and from the profiles of the cell-free serum. Hemocyte neutral lipids had lower proportions of polyunsaturated fatty acids than phospholipids. The fatty acid profiles of PC, PE, PS/PI and CA differ from each other and from the total lipid profiles, indicating selective fatty acid incorporation into hemocyte phospholipid species. Studies with radioactive arachidonic acid similarly indicated selective incorporation of polyunsaturated fatty acids into hemocyte lipids. Under our in vitro conditions, >40% of the total radioactivity was incorporated into hemocyte lipids. About 93% of the incorporated radioactivity was found in phospholipids. Within phospholipids. most of the radioactivity was associated with PC (46%), and less with PE (28%) and PS/PI (21%). Very little radioactivity was recovered in CA (0.9%).  相似文献   

14.
15.
Lipid metabolism in Trichuris globulosa (Nematoda)   总被引:1,自引:0,他引:1  
Adult males and females of Trichuris globulosa, an intestinal nematode parasite of goats, were studied for their lipid composition, capability of incorporation of (Na)-1-14C-acetate into different lipid classes and the activity of certain key enzymes of lipid metabolism. The parasite possesses a large variety of lipids including certain complex lipids. These are phosphatidylcholine (PC), diphosphatidylglycerol (cardiolipin), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylserine (PS), phosphatidylinositol (PI), plasmalogens (choline + ethanolamine), mono-, di- and triacylglycerols, free and esterified cholesterol, non-esterified fatty acids (NEFA), gangliosides, cerebrosides (glycosyl ceramide) and sulphuric acid esters of cerebrosides (sulphatides). The females contain more lipids than males, particularly the acylglycerols and phospholipids, possibly to meet the energy requirement and structural entities for the daily production of large numbers of eggs. Incorporation studies of labelled substrate, sodium-1-14C acetate demonstrate that the adult female has extremely active mechanisms for biosynthesizing these lipids. Most of the labels are found in PC, PE, SM, acylglycerols, NEFA, gangliosides, cerebrosides and sulphatides. Cholesterol, although a minor component of the parasitic lipids, incorporates large amount of label and also undergoes fast turnover. Kinetic analysis of the incorporation by measuring the rate constant (k) and half life (t1/2) reveals that gangliosides are the fastest biosynthesizing and turning over lipids, although they constitute only 0.1% of the total lipids. The presence of important enzymes of lipid biosynthesis, glucose-6-phosphate dehydrogenase, malate dehydrogenase and hydroxymethyl glutaryl-CoA reductase and an enzyme of lipid ester hydrolysis, triacylglycerol lipase, is also established in T. globulosa. Michaelis-Menten kinetic characteristics of the parasitic enzymes (Km, Vmax, v and the first order rate constant, k) are comparable with those of rat liver homogenates.  相似文献   

16.
H J Vial  M L Ancelin  J R Philippot  M J Thuet 《Blood cells》1990,16(2-3):531-55; discussion 556-61
The asexual development of Plasmodium within the mature mammalian erythrocyte is associated with intense membrane biogenesis, notably to ensure the increase in the size of the parasite and of the parasitophorous vacuolar membranes PVM. A considerable increase in the content of most lipids except cholesterol [namely, phospholipids PL, neutral lipids, and fatty acids FA] occurs. The PL composition and the constitutive FAs of the parasite differ markedly from the original host cell membrane. Particularly notable is the absence of cholesterol and sphingomyelin SM from the parasite membranes. How can the parasite obtain such a quantity of new lipid molecules in a host cell totally devoid of any lipid biosynthetic activity? Like the normal erythrocyte, the infected cell is unable to synthesize cholesterol or FAs. In contrast, it exhibits an intense biosynthesis of neutral lipids and a bewildering variety of PL biosyntheses. Phosphatidylcholine PC is synthesized by a de novo pathway, and also by methylation of phosphatidylethanolamine PE, which itself originates from de novo biosynthesis or from decarboxylation of phosphatidylserine PS. Hence, interference with this intense and specific PL metabolism could provide the basis for a new malaria chemotherapy. Indeed, compounds that interfere with the entry of the plasmatic precursors (FAs or polar heads) or with their metabolism are lethal to the parasite. Lastly, we focus on the structural modifications of the host cell membrane with respect to lipids, including increased fluidity and enhanced transbilayer mobility of PLs. Possible modifications in the asymmetric distribution of PLs in the host cell membrane are discussed in light of the various methods used and their limits. The capacity of infected cells to take up and metabolize large quantities of exogenous vesicles of PLs accounts for the intense dynamics of lipids in the infected erythrocytes.  相似文献   

17.
The aim of this study was to assess the phospholipid distribution of radioiodinated 17-iodoheptadecanoic acid (IHDA), 15-(p-iodophenyl)pentadecanoic acid (p-IPPA) and 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPPA) under normoxic conditions and to compare these data with the fatty acid composition of the phospholipid classes. After simultaneous i.v. injection of the radioiodinated fatty acids (1-123-IHDA; 1-131-p-IPPA; 1-125 DMIPPA) in open-chest dogs seven myocardial biopsies were taken over 40 min (n = 26). After lipid extraction of the biopsies the organic phase was analyzed for both neutral and polar lipids by two different TLC systems. The following polar lipid fractions were analyzed: lysophopshatidylcholine (LPC), sphingomyelin (SPH), phosphatidy1choline (PC; lecithin), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG; cardiolipin) and neutral lipids. Fractions were counted in a gamma well counter and corrected for cross-over and recovery. Results of the polar phospholipids analysis showed that IHDA has the highest incorporation into the phospholipids. The IHDA was mainly incorporated into PI (45.6%) followed by PC (30.9%), PE (14.0%) and PS (5.6%). The p-IPPA was predominantly incorporated incorporated into PC (37.2%), followed by PS (20.1%) and PE (13.7%). In contrast to IHDA, incorporation of p-IPPA into PI was small (6.4%). The DMIPPA analogue was incorporated into phopsholipids to only a very small degree, compared to IHDA and p-IPPA. PS (27.4%) was the only considerable phospholipid fraction into which DMIPPA was incorporated.The results clearly demonstrated that these radioiodinated fatty acid analogues have entirely different patterns of phospholipid incorporation. Major resemblances have been found between the incorporation into phospholipids of IHDA and the phospholipid distribution of the natural counterpart: stearic acid. The p—IPPA phospholipid incorporation only partly resembles the phospholipid distribution of palmitic acid. DMIPPA is because of its modified structure, incorporated into phospholipids to a low extent, mainly into PS. (Mol Cell Biochem116: 79–87, 1992)  相似文献   

18.
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.  相似文献   

19.
Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 pollen lipid species under optimum and high day and/or night temperatures using electrospray ionization‐tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct composition compared with that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The most HT‐responsive lipids were extraplastidic phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidic acid, and phosphatidylserine. The unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE were negatively correlated. Higher PC:PE at HT indicated possible PE‐to‐PC conversion, lower PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids experiencing coordinated metabolism under HT and confirmed the HT responsiveness of extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of our previous research on wheat leaves suggests that similar lipid changes contribute to HT adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions.  相似文献   

20.
Using capillary gas-liquid chromatography, we have analyzed the alteration in the total fatty acid, phospholipid and neutral lipid compositions of the monkey erythrocyte, after infection by the malarial parasite Plasmodium knowlesi. Data based on fatty acid quantitation show that the phospholipid composition is altered, with particularly large increases in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the most abundant phospholipids in normal and P. knowlesi-schizont-infected cells. Unesterified fatty acids were found to be less abundant in infected cells. The total fatty acid content of the cell is increased 6-fold during infection, and total fatty acid composition is also changed: the infected cells are richer in palmitate (+23%), oleate (+29%) and linoleate (+89%), but contained less stearate (-27%) and arachidonate (-40%). The determination of the fatty acid composition of individual phospholipids, neutral lipids and unesterified fatty acids showed that choline-containing phospholipids (PC and sphingomyelin) were not as altered in their fatty acid pattern as anionic phospholipids (PE, phosphatidylserine (PS) and phosphatidylinositol (PI) and lysophosphatidylcholine (lysoPC). Specific alterations in the fatty acid compositions of individual phospholipids were detected, whereas the rise in linoleic acid was the only change during infection that was recovered in each phospholipid (except PC), neutral lipid and unesterified fatty acids. The fatty acid composition of the neutral lipids and unesterified fatty acids was particularly modified: the only rise in arachidonic acid level was observed in these lipid classes after infection. The total plasmalogen level of the erythrocyte is decreased in infected cells (-60%), but their level is increased in PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号