首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clathrin-coated vesicle proton translocating complex is composed of a maximum of eight polypeptides. The function of the components of this system have not been defined. Proton pumping catalyzed by the reconstituted, 200-fold purified proton translocating complex of clathrin-coated vesicles is inhibited 50% at a dicyclohexylcarbodiimide (DCCD)/protein ratio of 0.66 mumol of DCCD/mg of protein. At an identical DCCD/protein ratio, the 17-kDa component of the proton pump is labeled by [14C]DCCD. Through toluene extraction, the 17-kDa subunit has been isolated from the holoenzyme. The 17-kDa polypeptide diminished proteoliposome acidification when coreconstituted with either bacteriorhodopsin or the intact clathrin-coated vesicle proton translocating ATPase. In both instances, treatment of the 17-kDa polypeptide with DCCD restored proteoliposome acidification. Moreover, the proton-conducting activity of the 17-kDa polypeptide is abolished by trypsin digestion. These results demonstrate that the 17-kDa polypeptide present in the isolated proton ATPase of clathrin-coated vesicles is a subunit which functions as a transmembranous proton pore.  相似文献   

2.
Lysosomal neuraminidase and beta-galactosidase are present in a complex together with a 32-kDa protective protein. This complex has been purified and the different components have been dissociated using potassium isothiocyanate (KSCN) treatment. beta-Galactosidase remains catalytically active, but neuraminidase loses its activity upon dissociation. The inactive dissociated neuraminidase was purified by removing the remaining non-dissociated beta-galactosidase/protective protein complex using beta-galactosidase-specific affinity chromatography. The dissociated neuraminidase material shows two major polypeptides on SDS-PAGE with an apparent molecular mass of 76 kDa and 66 kDa. Subsequently the 32-kDa protective protein was dissociated from the beta-galactosidase/protective protein complex, and purified. Antibodies raised against the dissociated inactive neuraminidase preparation specifically immunoprecipitate the active neuraminidase present in the complex with beta-galactosidase and protective protein. By immunoblotting evidence is provided that the 76-kDa protein is a subunit of neuraminidase which, in association with the 32-kDa protective protein, is essential for neuraminidase activity.  相似文献   

3.
We have used a monoclonal antibody to purify glucocorticoid-receptor complexes from WEHI-7 mouse thymoma cells. Molybdate-stabilized, nonactivated complexes were found to contain two distinct proteins which could be separated by polyacrylamide gel electrophoresis under denaturing and reducing conditions. One of the proteins, 100 kDa, was labeled when cytosol was incubated with the affinity ligand [3H]dexamethasone 21-mesylate. The second protein, 90 kDa, was not labeled. Several lines of evidence, including Western blot analysis of purified nonactivated complexes, indicate that only the 100-kDa protein is directly recognized by the antibody. The 90-kDa protein appears to be purified as a component of the nonactivated complex due to noncovalent association with the 100-kDa protein. Both the 100-kDa and 90-kDa components of the nonactivated complex become labeled with 35S when cells are grown in medium containing [35S]methionine. Using cells labeled in this manner, we have shown that activated (i.e. DNA-binding) cytosolic complexes, formed by warming either in intact cells or under cell-free conditions, contain only the 100-kDa protein. Complexes extracted from nuclei of warmed cells similarly contain only the 100-kDa protein. These results indicate that the 100-kDa and 90-kDa components of nonactivated complexes separate upon activation. Purification of nonactivated complexes from cells grown in medium containing [32P]orthophosphoric acid indicates that both the 100-kDa and 90-kDa components are phosphoproteins which can be labeled with 32P. Therefore, resolution of the two proteins will be essential in order to determine whether the receptor is dephosphorylated on activation.  相似文献   

4.
The bioemulsifier of Acinetobacter radioresistens KA53, referred to as alasan, is a high-molecular-weight complex of polysaccharide and protein. The emulsifying activity of the purified polysaccharide (apo-alasan) is very low. Three of the alasan proteins were purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had apparent molecular masses of 16, 31, and 45 kDa. Emulsification assays using the isolated alasan proteins demonstrated that the active components of the alasan complex are the proteins. The 45-kDa protein had the highest specific emulsifying activity, 11% higher than the intact alasan complex. The 16- and 31-kDa proteins gave relatively low emulsifying activities, but they were significantly higher than that of apo-alasan. The addition of the purified 16- and 31-kDa proteins to the 45-kDa protein resulted in a 1.8-fold increase in the specific emulsifying activity and increased stability of the oil-in-water emulsion. Fast-performance liquid chromatography analysis indicated that the 45-kDa protein forms a dimer in nondenaturing conditions and interacts with the 16- and 31-kDa proteins to form a high-molecular-mass complex. The 45-kDa protein and the three-protein complex had substrate specificities for emulsification and a range of pH activities similar to that of alasan. The fact that the purified proteins are active emulsifiers should simplify structure-function studies and advance our understanding of their biological roles.  相似文献   

5.
The bioemulsifier of Acinetobacter radioresistens KA53, referred to as alasan, is a high-molecular-weight complex of polysaccharide and protein. The emulsifying activity of the purified polysaccharide (apo-alasan) is very low. Three of the alasan proteins were purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had apparent molecular masses of 16, 31, and 45 kDa. Emulsification assays using the isolated alasan proteins demonstrated that the active components of the alasan complex are the proteins. The 45-kDa protein had the highest specific emulsifying activity, 11% higher than the intact alasan complex. The 16- and 31-kDa proteins gave relatively low emulsifying activities, but they were significantly higher than that of apo-alasan. The addition of the purified 16- and 31-kDa proteins to the 45-kDa protein resulted in a 1.8-fold increase in the specific emulsifying activity and increased stability of the oil-in-water emulsion. Fast-performance liquid chromatography analysis indicated that the 45-kDa protein forms a dimer in nondenaturing conditions and interacts with the 16- and 31-kDa proteins to form a high-molecular-mass complex. The 45-kDa protein and the three-protein complex had substrate specificities for emulsification and a range of pH activities similar to that of alasan. The fact that the purified proteins are active emulsifiers should simplify structure-function studies and advance our understanding of their biological roles.  相似文献   

6.
The purified progenitor toxin of Clostridium botulinum type C strain 6814 (C-6814) forms a large complex composed of 150-kDa neurotoxin (NT), 130-kDa nontoxic-nonhemagglutinin (NTNHA), and hemagglutinin (HA) components. The HA component consisted of a mixture of several subcomponents with molecular masses of 70, 55, 33, 26-21 and 17 kDa. We isolated the HA subcomponents from the progenitor toxin by chromatography in the presence of denaturants. The isolated HA subcomponents, designated as i-HA-33, i-HA-55, i-HA-70 and i-HA-33/17, were nearly homogeneous on SDS/PAGE, but the HA-17 and HA-26-21 components were not purified. Some HA subcomponents, designated as f-HA-33 and f-HA-33/17 complex, existed free of the progenitor toxin in the culture medium and they were separately purified. Every HA subcomponent so far isolated shows binding activity to erythrocytes. The hemagglutination activities of each HA subcomponent had a titer of 25 for the f-HA-33/17 complex, and below 23 for the other f- and i-HA subcomponents, while the parent progenitor L toxin was 28. The reconstitution of various combinations of f- and i-HA subcomponents was attempted via mixing and tested for hemagglutination activity. When the i-HA-33/17 complex and i-HA-55 were mixed, the hemagglutination activity was recovered to a titer of 29, which was slightly higher than that of the parent toxin. These data imply that a combination of at least HA-33, -17 and -55 subcomponents is required for full hemagglutination activity of the botulinum progenitor toxin, but each single HA subcomponent shows weak or no aggregation of erythrocytes.  相似文献   

7.
A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA.  相似文献   

8.
An estrogen-regulated 52-kDa glycoprotein secreted by MCF7 breast cancer cells was first purified from serum-free conditioned medium by concanavalin-A--Sepharose (ConA--Sepharose). The 13% pure protein was then used to obtain monoclonal antibodies to the 52-kDa protein [Garcia et al. (1985) Cancer Res. 45, 709-716]. Using ConA--Sepharose and monoclonal antibody affinity chromatographies, the secreted 52-kDa protein was finally purified to homogeneity as verified by silver staining of sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and one single N-terminal amino acid. The purification factor was approximately 1400 and the yield 40%. The same two-step procedure, applied to MCF7 cell extracts, yielded four immunologically related proteins of 52 kDa, 48 kDa, 34 kDa and 17 kDa, which were purified 1250-fold with a yield of 30%. These components were further separated by high-performance liquid chromatography gel filtration under denaturing conditions. The final products were homogeneous on the basis of silver-stained SDS-PAGE and gel filtration. However, isoelectrofocusing showed that the pI of the secreted 52-kDa protein and the cellular 34-kDa protein varied from 5.5 to 6.5. Amino acid analysis of the secreted and the related cellular 34-kDa protein is given. Western immunoblotting, pulse chase studies and post-translational studies indicate that the 52-kDa protein is the precursors of a lysosomal enzyme which is partially secreted and partially processed into smaller cellular forms.  相似文献   

9.
Human transforming growth factor beta 1 (TGF-beta 1) was purified as a latent high Mr complex from human platelets by a six-step procedure. Analysis by sodium dodecyl sulfate (SDS)-gel electrophoresis under reducing conditions revealed that the complex was composed of at least three components with apparent Mr values of 13,000, 40,000, and 125,000-160,000. The 13-kDa subunit was part of a disulfide-bonded dimer and was identified by amino acid sequencing as TGF-beta 1. The 40-kDa subunit was identified as the amino-terminal part of the TGF-beta 1 precursor lacking the hydrophobic signal sequence. Partial sequencing of the 125-160-kDa protein revealed that it is distinct from known proteins. The 40-kDa and the 125-160-kDa subunits are linked by disulfide bonds, forming a complex with an apparent Mr of 210,000 on SDS gels under nonreducing conditions. Experiments with partial reduction revealed that each complex contains two 40-kDa components linked by disulfide bonds; in addition, the dimer is disulfide-linked to one 125-160-kDa binding protein. TGF-beta 1 binds noncovalently to the 210-kDa complex, and in bound form, TGF-beta 1 is inactive. Incubations of the latent form of TGF-beta 1 at extreme pH values, in 0.02% SDS or in 8 M urea, lead to activation of TGF-beta 1, whereas the complex was resistant to treatment with 5 M NaCl or heat (3 min at 95 degrees C).  相似文献   

10.
Association of thrombin-antithrombin III complex with vitronectin in serum   总被引:3,自引:0,他引:3  
Purification of vitronectin by identical procedures from serum instead of plasma results in the coisolation of an additional protein component with mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 82 kDa. We show that this component is the thrombin-antithrombin III complex based on the following evidence. Similar to a complex constructed using purified thrombin and antithrombin III, the 82-kDa component has a reduced molecular size of 69 kDa if it is not boiled prior to SDS-PAGE. Upon prolonged boiling in SDS it dissociates into 56- and 32-kDa components which co-migrate in SDS-PAGE with purified antithrombin III and thrombin, respectively. The 82- and 56-kDa components react with an antiserum against antithrombin III, and an antiserum prepared against the 82-kDa complex reacts with purified antithrombin III. Thrombin-antithrombin III complex, from either serum or recalcified clotted plasma, bound to vitronectin immobilized on Sepharose or plastic. However, purified antithrombin III which had not reacted with thrombin lacked affinity for vitronectin as did antithrombin III from citrated plasma. Purified antithrombin III acquired affinity for immobilized vitronectin if it was complexed with thrombin or was modified by radioiodination. Binding of vitronectin to antithrombin III coated on plastic was demonstrated using enzyme-linked immunosorbent assay. These results demonstrate that vitronectin binds thrombin-antithrombin III complexes through a cryptic site in antithrombin III which can be exposed when antithrombin III is radioiodinated, bound to plastic, or complexed with thrombin. Since vitronectin can interact with cells, the binding of vitronectin to the thrombin-antithrombin III complex may serve to facilitate the interaction of this complex with cell surfaces.  相似文献   

11.
The structural association of the spinach 17-kDa extrinsic protein of photosystem II with other extrinsic and membrane-bound components of the photosystem was investigated by labeling the 17-kDa extrinsic protein with the amino-group-specific reagent N-hydroxysuccinimidobiotin both on intact photosystem II membranes or as a free protein in solution. After isolation of the biotinylated molecules, the modified 17-kDa proteins were allowed to rebind to photosystem II membranes which were depleted of the 17-kDa component. Differential binding of the protein biotinylated in solution compared to unmodified 17-kDa protein or 17-kDa protein modified on PS II membranes was observed. This indicated possible steric or ionic interference because of biotinylated lysyl residues present on the protein modified in solution. Biotinylated sites on the different modified 17-kDa proteins were identified by trypsin and Staphylococcus V8 protease digestion, followed by affinity chromatography enrichment of the biotinylated peptides and analysis of the peptide fragment mixture by nanospray liquid chromatography-tandem mass spectrometry. Four lysyl residues that were modified when the protein was biotinylated in solution were not biotinylated when the protein was modified on the PS II membrane (90K, 96K, 101K, and 102K). These residues appear to identify a protein domain involved in the interaction of the 17-kDa protein with the other components of the photosystem.  相似文献   

12.
We have used a serum from a patient with Sj?gren's syndrome containing high titer (100,000) anti-Golgi autoantibodies and lower titer (20,000) anti-nuclear autoantibodies to characterize the Golgi complex. The Sj?gren's syndrome serum immunoprecipitated a number of components of molecular mass 35-230 kDa from detergent extracts of [35S]methionine-labeled HeLa cells; at high dilution, the serum precipitated one major 230-kDa component. Using the Sj?gren's syndrome serum, cDNA clones encoding the Golgi autoantigen were isolated from a lambda gt11 HeLa cell cDNA library. Autoantibodies from the Sj?gren's syndrome serum, affinity purified from a recombinant bacterial fusion protein generated from one of the cDNA clones, showed Golgi staining of human, mouse, and chicken cells by immunofluorescence. The purified autoantibodies immunoprecipitated and immunoblotted a 230-kDa component. A rabbit antiserum raised to the recombinant fusion protein specifically stained the Golgi complex by immunofluorescence and reacted with a 230-kDa protein by immunoprecipitation and immunoblotting. The 230-kDa protein was recovered in both the 100,000 x g sedimentable and soluble fractions in cell lysates and in the aqueous phase of Triton X-114 extracts. The 230-kDa autoantigen was dissociated from the Golgi complex by 15-min brefeldin A treatment, dissociation kinetics similar to that of mannosidase II. However, unlike mannosidase II, autoantigen staining was markedly reduced after drug treatment. Removal of brefeldin A resulted in reassociation of the autoantigen with the Golgi complex. The epitopes recognized by the affinity purified human and rabbit antibodies were ultrastructurally localized to the cytosolic face of one side of the Golgi stack, probably the trans-face. Taken together, the 230-kDa protein is a conserved, peripheral membrane component specifically associated with one Golgi compartment. We suggest that this peripheral Golgi protein may have a role in the compartment-specific structural organization of the Golgi or in sorting and transport of proteins.  相似文献   

13.
The PSI core complex prepared from cucumber cotyledons, which contains 80 chlorophylls per reaction center (P700) and eight polypeptides with apparent molecular masses of 65/63, 20, 19.5, 18.5, 17.5, 7.6, and 5.8 kDa, has been shown to catalyze the light-dependent transfer of electrons from plastocyanin to ferredoxin. The "native" PSI complex, which contains more than fifteen polypeptides and 120 chlorophylls per P700, did not show higher activity. Any attempt to deplete subunit(s) of the core complex decreased its activity. These results suggest that in addition to light-harvesting chlorophyll a/b protein complexes, several genes of psaA-psaK, which have been proposed as components of PSI complex, are not involved in the activity of PSI complex. It was also found that the amount of 18.5-kDa polypeptide in the PSI complex affects the activity: when this polypeptide was largely depleted, the complex was almost inactive. The inactivation was due to inhibition of electron transfer from plastocyanin to photooxidized P700. Chemical cross-linking and N-terminal amino acid sequencing experiments indicated that the 18.5-kDa polypeptide is the plastocyanin-docking protein and the psaF gene product. The function of the psaF gene product was discussed.  相似文献   

14.
The glycoprotein Ib complex of human blood platelets   总被引:4,自引:0,他引:4  
Human glycoprotein Ib (GPIb) is a major integral membrane protein on human blood platelets responsible for the initial attachment of platelets to the exposed vascular subendothelium. In this report we describe an isolation method for a 'GPIb complex' as well as for its individual components. A three-step procedure involving Triton X-114 phase-partition, affinity chromatography on wheat germ agglutinin and ion-exchange chromatography on DEAE-Sephacel yielded milligram quantities of purified GPIb complex. The single components of the complex were further purified by gel filtration on AcA34 in 0.1% sodium dodecyl sulfate. As well as GPIb, the complex contains GP17, actin-binding protein, actin and a series of unidentified proteins with different molecular masses. In contrast to GPIb alpha, which is very rich in O-linked oligosaccharides, sugar analysis revealed that GPIb beta and GP17 seem to have only N-linked chains of the lactosamine type. The C-terminal alpha-chain remnant, which probably spans the plasma membrane, was identified and isolated for the first time. Western blotting with polyclonal rabbit anti-GPIb antibodies and silver-staining of one- or two-dimensional dodecyl sulfate/polyacrylamide gels revealed that it has an apparent molecular mass of 20 kDa and is linked to GPIb beta by a disulfide bridge close to the membrane. The thrombin-binding site on GPIb is located near the N-terminus on a 40-kDa fragment of GPIb alpha. A disulfide bridge in the N-terminal region is not essential for thrombin binding to GPIb.  相似文献   

15.
Mammalian lysosomal sialidase exists as an enzyme complex with β-galactosidase and carboxypeptidase, so-called “protective protein.” In this article, we report that chicken sialidase also occurs as a complex with β-galactosidase and protective protein. The purified sialidase complex had a molecular weight > 700 kDa on gel filtration and showed four protein components of 76, 65, 54 and 48 kDa on SDS-PAGE under nonreducing conditions. N-Terminal sequences of the 65- and 48-kDa proteins were homologous to human lysosomal β-galactosidase and protective protein precursor, respectively. The purified sialidase complex also had carboxypeptidase activity. Both sialidase and carboxypeptidase activities were precipitated together by an antibody against chicken β-galactosidase. The complex reversibly dissociated into 120-kDa β-galactosidase dimer and 100-kDa carboxypeptidase dimer at pH 7.5, but the sialidase irreversibly inactivated during the depolymerization. These findings indicate that chicken sialidase exists as a multienzyme complex, by which the sialidase activity appears to be stabilized.  相似文献   

16.
The human cytomegalovirus (HCMV) gCIII envelope complex is composed of glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and a third, 125-kDa protein not related to gH or gL (M. T. Huber and T. Compton, J. Virol. 71:5391–5398, 1997; L. Li, J. A. Nelson, and W. J. Britt, J. Virol. 71:3090–3097, 1997). Glycosidase digestion analysis demonstrated that the 125-kDa protein was a glycoprotein containing ca. 60 kDa of N-linked oligosaccharides on a peptide backbone of 65 kDa or less. Based on these biochemical characteristics, two HCMV open reading frames, UL74 and TRL/IRL12, were identified as candidate genes for the 125-kDa glycoprotein. To identify the gene encoding the 125-kDa glycoprotein, we purified the gCIII complex, separated the components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and subjected gH and the 125-kDa glycoprotein to amino acid microsequence analysis. Microsequencing of an internal peptide derived from purified 125-kDa glycoprotein yielded the amino acid sequence LYVGPTK. A FASTA search revealed an exact match of this sequence to amino acids 188 to 195 of the predicted product of the candidate gene UL74, which we have designated glycoprotein O (gO). Anti-gO antibodies reacted in immunoblots with a protein species migrating at ca. 100 to 125 kDa in lysates of HCMV-infected cells and with 100- and 125-kDa protein species in purified virions. Anti-gO antibodies also immunoprecipitated the gCIII complex and recognized the 125-kDa glycoprotein component of the gCIII complex. Positional homologs of the UL74 gene were found in other betaherpesviruses, and comparisons of the predicted products of the UL74 homolog genes demonstrated a number of conserved biochemical features.  相似文献   

17.
The single nuclear gene encoding the 17-kDa subunit VI of yeast ubiquinol: cytochrome c oxidoreductase has been inactivated by one-step gene disruption. Disruption was verified by Southern blot analysis of nuclear DNA and immunoblotting. Cells lacking the 17-kDa protein are still capable of growth on glycerol and they contain all other subunits of complex III at wild-type levels, implying that the 17-kDa subunit is not essential for either assembly of complex III, or its function. In vitro, electron transport activity of complex III of mutant cells is about 40% of the wild-type complex, but for the total respiratory chain no significant differences in activity was measured between mutant and wild type. The energy-transducing capacity of the complex is not reduced in the absence of the 17-kDa protein. In a relatively high proportion of the transformants, disruption of the 17-kDa gene was accompanied by the appearance of a second mutation causing a petite phenotype. In these cells which lack cytochrome b, the presence of the 17-kDa protein (after complementation) results in stabilization of cytochrome c1.  相似文献   

18.
Xenorhabdus nematophila is an insect pathogen and produces protein toxins which kill the larval host. Previously, we characterized an orally toxic, large, outer membrane-associated protein complex from the culture medium of X. nematophila. Here, we describe the cloning, expression, and characterization of a 17-kDa pilin subunit of X. nematophila isolated from that protein complex. The gene was amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant protein was refolded in vitro in the absence of its cognate chaperone by using a urea gradient. The protein oligomerized during in vitro refolding, forming multimers. Point mutations in the conserved N-terminal residues of the pilin protein greatly destabilized its oligomeric organization, demonstrating the importance of the N terminus in refolding and oligomerization of the pilin subunit by donor strand complementation. The recombinant protein was cytotoxic to cultured Helicoverpa armigera larval hemocytes, causing agglutination and subsequent release of the cytoplasmic enzyme lactate dehydrogenase. The agglutination of larval cells by the 17-kDa protein was inhibited by several sugar derivatives. The biological activity of the purified recombinant protein indicated that it has a conformation similar to that of the native protein. The 17-kDa pilin subunit was found to be orally toxic to fourth- or fifth-instar larvae of an important crop pest, H. armigera, causing extensive damage to the midgut epithelial membrane. To our knowledge, this is first report describing an insecticidal pilin subunit of a bacterium.  相似文献   

19.
Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1–3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.  相似文献   

20.
《BBA》1986,850(1):146-155
When the NaCl extract from spinach Photosystem II particles was dialyzed against a low-salt medium, the 18-kDa protein slowly degraded to a fragment of 17 kDa. This observation suggests that a proteinase previously associated with the Photosystem II particles in a latent form was activated by dissociation with NaCl. The 18-kDa protein and the 17-kDa fragment were purified, and their N-terminal amino acid sequences and total amino acid compositions were determined. These results determined 44 amino acid residues at the N-terminal of the 18-kDa protein, and suggest that 12 amino acid residues (mostly hydrophobic) at the N-terminal were lost by the degradation. The 18-kDa protein could rebind to the NaCl-treated and 24-kDa protein-supplemented Photosystem II particles and sustain their oxygen-evolution activity in a low-Cl medium, whereas the 17-kDa fragment had lost these abilities. These observations suggest that the N-terminal region of the 18-kDa protein forms a domain which binds to Photosystem II particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号