首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.  相似文献   

2.
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.  相似文献   

3.
4.
The enteric nervous system (ENS) is formed from vagal and sacral neural crest cells (NCC). Vagal NCC give rise to most of the ENS along the entire gut, whereas the contribution of sacral NCC is mainly limited to the hindgut. This, and data from heterotopic quail-chick grafting studies, suggests that vagal and sacral NCC have intrinsic differences in their ability to colonize the gut, and/or to respond to signalling cues within the gut environment. To better understand the molecular basis of these differences, we studied the expression of genes known to be essential for ENS formation, in sacral NCC within the chick hindgut. Our results demonstrate that, as in vagal NCC, Sox10, EdnrB, and Ret are expressed in sacral NCC within the gut. Since we did not detect a qualitative difference in expression of these ENS genes we performed DNA microarray analysis of vagal and sacral NCC. Of 11 key ENS genes examined from the total data set, Ret was the only gene identified as being highly differentially expressed, with a fourfold increase in expression in vagal versus sacral NCC. We also found that over-expression of RET in sacral NCC increased their ENS developmental potential such that larger numbers of cells entered the gut earlier in development, thus promoting the fate of sacral NCC towards that of vagal NCC.  相似文献   

5.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   

6.
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing axonal projections toward the ventral midline in the developing spinal cord (Fazeli et al., Nature 386 (1997) 796). In addition, these mutants lack several major commissures within the forebrain, including the corpus callosum and the hippocampal commissure. In contrast to the CNS, the role of the DCC guidance receptor in the development of the mammalian peripheral and enteric nervous systems (PNS and ENS) has not been investigated. Here we demonstrate using immunohistochemical analysis that the DCC receptor is present in the developing mouse PNS where it is found on spinal, segmental, and sciatic nerves, and in developing sensory ganglia and their associated axonal projections. In addition, DCC is present in the ENS throughout the early developmental phase.  相似文献   

7.
Formation of the enteric nervous system (ENS) from migratory neural crest-derived cells that colonize the primordial gut involves a complex interplay among different signaling molecules. The bone morphogenetic proteins (BMPs), specifically BMP2 and BMP4, play a particularly important role in virtually every stage of gut and ENS development. BMP signaling helps to pattern both the anterior-posterior axis and the radial axis of the gut prior to colonization by migratory crest progenitor cells. BMP signaling then helps regulate the migration of enteric neural crest-derived precursors as they colonize the fetal gut and form ganglia. BMP2 and -4 promote differentiation of enteric neurons in early fetal ENS development and glia at later stages. A major role for BMP signaling in the ENS is regulation of responses to other growth factors. Thus BMP signaling first regulates neurogenesis by modulating responses to GDNF and later gliogenesis through its effects on GGF-2 responses. Furthermore, BMPs promote growth factor dependency for survival of ENS neurons (on NT-3) and glia (on GGF-2) by inducing TrkC (neurons) and ErbB3 (glia). BMP signaling limits total neuron numbers, favoring the differentiation of later born neuronal phenotypes at the expense of earlier born ones thus influencing the neuronal composition of the ENS and the glia/neuron ratio. BMP2 and -4 also promote gangliogenesis via modification of neural cell adhesion molecules and promote differentiation of the circular and then longitudinal smooth muscles. Disruption of BMP signaling leads to defects in the gut and in ENS function commensurate with these complex developmental roles.  相似文献   

8.
Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis   总被引:1,自引:0,他引:1  
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.  相似文献   

9.
Barlow A  de Graaff E  Pachnis V 《Neuron》2003,40(5):905-916
The enteric nervous system (ENS) in vertebrates is derived mainly from vagal neural crest cells that enter the foregut and colonize the entire wall of the gastrointestinal tract. Failure to completely colonize the gut results in the absence of enteric ganglia (Hirschsprung's disease). Two signaling systems mediated by RET and EDNRB have been identified as critical players in enteric neurogenesis. We demonstrate that interaction between these signaling pathways controls ENS development throughout the intestine. Activation of EDNRB specifically enhances the effect of RET signaling on the proliferation of uncommitted ENS progenitors. In addition, we reveal novel antagonistic roles of these pathways on the migration of ENS progenitors. Protein kinase A is a key component of the molecular mechanisms that integrate signaling by the two receptors. Our data provide strong evidence that the coordinate and balanced interaction between receptor tyrosine kinases and G protein-coupled receptors controls the development of the nervous system in mammals.  相似文献   

10.
The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining feature of Hirschsprung’s disease (HSCR) and has been replicated in a number of mouse models. Mutations in the RET tyrosine kinase account for over half of familial cases of HSCR and mice mutant for Ret exhibit aganglionosis. RET exists in two main isoforms, RET9 and RET51 and studies in mouse have shown that RET9 is sufficient to allow normal development of the ENS. In the last several years, zebrafish has emerged as a model of vertebrate ENS development, having been supported by a number of demonstrations of conservation of gene function between zebrafish, mouse and human. In this study we further analyse the potential similarities and differences between ENS development in zebrafish, mouse and human. We demonstrate that zebrafish Ret is required in a dose-dependent manner to regulate colonization of the gut by neural crest derivatives, as in human. Additionally, we show that as in mouse and human, zebrafish ret is produced as two isoforms, ret9 and ret51. Moreover, we show that, as in mouse, the Ret9 isoform is sufficient to support colonization of the gut by enteric neurons. Finally, we identify zebrafish orthologues of genes previously identified to be expressed in the mouse ENS and demonstrate that these genes are expressed in the developing zebrafish ENS, thereby identifying useful ENS markers in this model organism. These studies reveal that the similarities between gene expression and gene function across vertebrate species is more extensive than previously appreciated, thus supporting the use of zebrafish as a general model for vertebrate ENS development and the use of zebrafish genetic screens as a way to identify candidate genes mutated in HSCR cases.  相似文献   

11.
The primary cilium is a non‐motile cilium whose structure is 9+0. It is involved in co‐ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells.  相似文献   

12.
A theoretical framework based on Hill numbers has recently been advocated to measure and partition diversity sensu stricto. Hill numbers can be interpreted intuitively as effective number of species (ENS). They conform to the so‐called replication principle allowing a mathematically coherent multiplicative partitioning of diversity. They form a family of ENS defined by the parameter q which controls the weight attributed to rare species. Despite its advantages, this framework was developed without considering its robustness when treating community samples. In this study, we first show that Hurlbert diversity indices (expected number of species among k individuals) can be transformed into ENS that conform asymptotically to the replication principle while controlling the weight given to rare species through parameter k. We investigate the statistical properties of Hill and Hurlbert ENS using simulated communities with contrasted diversity. The properties of multiplicative beta diversity estimators based on ENS are also characterized by simulating communities with different levels of differentiation. We show that Hurlbert ENS provides a better statistical performance than Hill numbers when dealing with small sample sizes. By contrast, Hill numbers and their estimators suffer from substantial bias except when rare species have a low weight (q= 2). An estimator of ENS estimating both Hill numbers for q= 2 and Hurlbert ENS for k= 2 is shown to give the best performance and is recommended for processing real datasets when rare species receive low weight. In order to better take account of rare species, current estimators of Hill numbers are not recommended when sample size is too low while Hurlbert’s ENS performs reliably. In conclusion, while Hill numbers possess some interesting mathematical properties that are not shared by Hurlbert’s ENS, the latter outperforms Hill numbers in terms of statistical properties and is well suited to processing community samples, as illustrated on a real dataset.  相似文献   

13.
Zebrafish lacking functional sox10 have defects in non-ectomesenchymal neural crest derivatives including the enteric nervous system (ENS) and as such provide an animal model for human Waardenburg Syndrome IV. Here, we characterize zebrafish phox2b as a functionally conserved marker of the developing ENS. We show that morpholino-mediated knockdown of Phox2b generates fish modeling Hirschsprung disease. Using markers, including phox2b, we investigate the ontogeny of the sox10 ENS phenotype. As previously shown for melanophore development, ENS progenitor fate specification fails in these mutant fish. However, in addition, we trace back the sox10 mutant ENS defect to an even earlier time point, finding that most neural crest cells fail to migrate ventrally to the gut primordium.  相似文献   

14.
Enteric nervous system (ENS) precursors undergo a complex process of cell migration, proliferation, and differentiation to form an integrated network of neurons and glia within the bowel wall. Although retinoids regulate ENS development, molecular and cellular mechanisms of retinoid effects on the ENS are not well understood. We hypothesized that retinoids might directly affect ENS precursor differentiation and proliferation, and tested that hypothesis using immunoselected fetal ENS precursors in primary culture. We now demonstrate that all retinoid receptors and many retinoid biosynthetic enzymes are present in the fetal bowel at about the time that migrating ENS precursors reach the distal bowel. We further demonstrate that retinoic acid (RA) enhances proliferation of subsets of ENS precursors in a time-dependent fashion and increases neuronal differentiation. Surprisingly, however, enteric neurons that develop in retinoid deficient media have dramatically longer neurites than those exposed to RA. This difference in neurite growth correlates with increased RhoA protein at the neurite tip, decreased Smurf1 (a protein that targets RhoA for degradation), and dramatically decreased Smurf1 mRNA in response to RA. Collectively these data demonstrate diverse effects of RA on ENS precursor development and suggest that altered fetal retinoid availability or metabolism could contribute to intestinal motility disorders.  相似文献   

15.
16.
The enteric nervous system (ENS) forms from migrating neural crest-derived precursors that differentiate into neurons and glia, aggregate into ganglion cell clusters, and extend neuronal processes to form a complex interacting network that controls many aspects of intestinal function. Bone morphogenetic proteins (BMPs) have diverse roles in development and influence the differentiation, proliferation, and survival of ENS precursors. We hypothesized that BMP signaling might also be important for the ENS precursor migration, ganglion cell aggregation, and neurite fasciculation necessary to form the enteric nervous system. We now demonstrate that BMP signaling restricts murine ENS precursors to the outer bowel wall during migration. In addition, blocking BMP signaling causes faster colonization of the murine colon, reduces ganglion cell aggregation, and reduces neurite fasciculation. BMP signaling also influences patterns of neurite extension within the developing bowel wall. These effects on ENS precursor migration and neurite fasciculation appear to be mediated at least in part by increased polysialic acid addition to neural cell adhesion molecule (Ncam1) in response to BMP. Removing PSA enzymatically reverses the BMP effects on ENS precursor migration and neurite fasciculation. These studies demonstrate several novel roles for BMP signaling and highlight new functions for sialyltransferases in the developing ENS.  相似文献   

17.
Chagas' disease is one of the few functional gastrointestinal disorders for which a causative agent has been identified. However, some pathological aspects of the chagasic megasyndromes are still incompletely understood. Chagasic megacolon is characterized by an inflammatory process, organ dilatation and neuronal reduction in both plexuses of the enteric nervous system (ENS). Although some studies on the ENS in Chagas' disease have been performed, the process of neuronal destruction and neuronal regeneration still remains unclear. Our hypothesis is that the regeneration process of the ENS may be involved with the mechanisms that prevent or retard organ dilatation and chagasic megacolon development. For that reason, we evaluated the neuronal regeneration with the marker GAP-43 in the colon's neuronal plexuses from chagasic patients with megacolon, and from non-infected individuals. Visual examination and quantitative analysis revealed an increased neuronal regeneration process in the dilated portion from chagasic patients when compared with the non-dilated portion and with non-infected individuals. We believe that this increased regeneration can be interpreted as an accentuated neuronal plasticity that may be a response of the ENS to avoid megacolon propagation to the entire organ and maintain the colon functional innervation.  相似文献   

18.
Targeted deletion of the bHLH DNA-binding protein Hand2 in the neural crest, impacts development of the enteric nervous system (ENS), possibly by regulating the transition from neural precursor cell to neuron. We tested this hypothesis by targeting Hand2 deletion in nestin-expressing neural precursor (NEP) cells. The mutant mice showed abnormal ENS development, resulting in lethal neurogenic pseudo-obstruction. Neurogenesis of neurons derived from NEP cells identified a second nestin non-expressing neural precursor (NNEP) cell in the ENS. There was substantial compensation for the loss of neurons derived from the NEP pool by the NNEP pool but this was insufficient to abrogate the negative impact of Hand2 deletion. Hand2-mediated regulation of proliferation affected both neural precursor and neuron numbers. Differentiation of glial cells derived from the NEP cells was significantly decreased with no compensation from the NNEP pool of cells. Our data indicate differential developmental potential of NEPs and NNEPs; NNEPs preferentially differentiate as neurons, whereas NEPs give rise to both neurons and glial cells. Deletion of Hand2 also resulted in complete loss of NOS and VIP and a significant decrease in expression of choline acetyltransferase and calretinin, demonstrating a role for Hand2 in neurotransmitter specification and/or expression. Loss of Hand2 resulted in a marked disruption of the developing neural network, exemplified by lack of a myenteric plexus and extensive overgrowth of fibers. Thus, Hand2 is essential for neurogenesis, neurotransmitter specification and neural network patterning in the developing ENS.  相似文献   

19.

Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.

  相似文献   

20.
Normal development of the enteric nervous system (ENS) requires the coordinated activity of multiple proteins to regulate the migration, proliferation, and differentiation of enteric neural crest cells. Much of our current knowledge of the molecular regulation of ENS development has been gained from transgenic mouse models and cultured neural crest cells. We have developed a method for studying the molecular basis of ENS formation complementing these techniques. Aneural quail or mouse hindgut, isolated prior to the arrival of neural crest cells, was transplanted into the coelomic cavity of a host chick embryo. Neural crest cells from the chick host migrated to and colonized the grafted hindgut. Thorough characterization of the resulting intestinal chimeras was performed by using immunohistochemistry and vital dye labeling to determine the origin of the host-derived cells, their pattern of migration, and their capacity to differentiate. The formation of the ENS in the intestinal chimeras was found to recapitulate many aspects of normal ENS development. The host-derived cells arose from the vagal neural crest and populated the graft in a rostral-to-caudal wave of migration, with the submucosal plexus being colonized first. These crest-derived cells differentiated into neurons and glial cells, forming ganglionated plexuses grossly indistinguishable from normal ENS. The resulting plexuses were specific to the grafted hindgut, with quail grafts developing two ganglionated plexuses, but mouse grafts developing only a single myenteric plexus. We discuss the advantages of intestinal coelomic transplants for studying ENS development. This work was supported by NIH K08HD46655 (to A.M.G.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号