首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
This paper tests the applicability of the Functional Habitat Concept (FHC) to a lowland tropical river in Australia. The underlying tenet of the FHC is that in-stream hydrological and physical processes form distinct habitats, and where these habitats support distinct macroinvertebrate assemblages they are considered ‘functional’ habitats. This concept has been employed in the northern hemisphere as a tool for river restoration and management, especially where habitats are easier to manage than species, but the FHC has yet to be tested in Australia. This study reports the application of the FHC to the regulated Lower Ord River (LOR) in the remote far north of Western Australia. Seven ‘potential’ in-stream habitat units were identified on the basis of their physical properties. Multivariate and species preference analysis of macroinvertebrate data indicated that these habitats supported six distinct macroinvertebrate assemblages, providing six ‘functional’ habitats (gravel runs and rock rapids, sand margins, mud/silt margins, flooded riparian vegetation, emergent vegetation, and submerged macrophyte beds). Macroinvertebrate preferences for particular habitats reflected the broad ecology and life-history characteristics of the species, which in turn reflected the physical attributes of the habitats. We argue that in a region where the fauna has been little studied, and for which there is little ecological information, the FHC is a valuable approach. For a river that is facing increased water abstraction, the FHC potentially aids in the preservation of macroinvertebrate diversity as it identifies critical functional habitats for managers to maintain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   

2.
The macroinvertebrate species and assemblages of headwater streams of the River Tyne catchment in northern England were classified and their relationship with environmental variables based on stream structure, water acidity, distance from source and land cover investigated using constrained ordination and logistic regression. Fuzzy classification of data from 322 stream sites generated five assemblages. Stream structure, quantified as an exposure index, was found to be the most important environmental variable, with water acidity also important. Distance from source and land cover had less influence on species and assemblage distribution. A considerable amount of variation in assemblage distribution was explained using a two-variable logistic regression with stream structure (exposure index) and water acidity (pH) in a template. Site structure and water acidity appeared to be related to drift, geology and topography with little anthropogenic influence. The applicability of the habitat template concept for explaining the distribution of stream macroinvertebrates is discussed.  相似文献   

3.
This study aimed at comparing the results obtained by processing a series of data according to several diversity indices (Simpson, Berger-Parker, Margalef, Menhinick, McIntosh, Shannon) and one similarity index (Jaccard) with those obtained from two biotic indices (Trent River Biotic Index, Extended Biotic Index). In addition, Cody's index was adopted to measure the species turnover along the stream gradient. The source of the data was a study of the seasonal variations of macroinvertebrates from the Ravella stream (Como Province, Northern Italy). The conclusions are the following. There is clearly a certain connection between the organic debris in the habitat, the abundance of individuals and the decrease in the diversity value of the macroinvertebrate association. The species turnover along the stream gradient is rapid which is due, in addition to birth and death rates, to the fact that most of the insects emerge as terrestrial adults. The species abundance distribution is a very simple and powerful tool for describing and comparing the species diversity from different sampling stations. Any type of monitoring (e.g., biotic indices, diversity indices) is useful in comparing non-polluted and heavily polluted environments. Conversely, small differences between species associations are better highlighted if diversity indices with high discriminant ability (e.g., Simpson's index) or species abundance distribution are used rather than biotic indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号