首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying nonrandom clade diversification is a critical first step toward understanding the evolutionary processes underlying any radiation and how best to preserve future phylogenetic diversity. However, differences in diversification rates have not been quantitatively assessed for the majority of groups because of the lack of necessary analytical tools (e.g., complete species-level phylogenies, estimates of divergence times, and robust statistics which incorporate phylogenetic uncertainty and test appropriate null models of clade growth). Here, for the first time, we investigate diversification rate heterogeneity in one of the largest groups studied thus far, the bats (Mammalia: Chiroptera). We use a recent, robust statistical approach (whole-tree likelihood-based relative rate tests) on complete dated species-level supertree phylogenies. As has been demonstrated previously for most other groups, among-lineage diversification rate within bats has not been constant. However, we show that bat diversification is more heterogeneous than in other mammalian clades thus far studied. The whole-tree likelihood-based relative rates tests suggest that clades within the families Phyllostomidae and Molossidae underwent a number of significant changes in relative diversification rate. There is also some evidence for rate shifts within Pteropodidae, Emballonuridae, Rhinolophidae, Hipposideridae, and Vespertilionidae, but the significance of these shifts depends on polytomy resolution within each family. Diversification rate in bats has also not been constant, with the largest diversification rate shifts occurring 30-50 million years ago, a time overlapping with the greatest number of shifts in flowering plant diversification rates.  相似文献   

2.
This paper presents the first complete estimate of the phylogenetic relationships among all 197 species of extant and recently extinct ruminants combining morphological, ethological and molecular information. The composite tree is derived by applying matrix representation using parsimony analysis to 164 previous partial estimates, and is remarkably well resolved, containing 159 nodes (> 80 % of the potential nodes in the completely resolved phylogeny). Bremer decay index has been used to indicate the degree of certainty associated with each clade. The ages of over 80% of the clades in the tree have been estimated from information in the literature. The supertree for Ruminantia illustrates which areas of ruminant phylogeny are still only roughly known because of taxa with controversial relationships (e.g. Odocoileini, Antilopinae) or not studied in great detail (e.g. Muntiacus). It supports the monophyly of the ruminant families and Pecora. According to this analysis Antilocapridae and Giraffidae constitute the superfamily Giraffoidea, which is the sister group of a clade clustering Bovoidea and Cervoidea. The position of several taxa whose systematic positions have remained controversial in the past (Saiga, Pelea, Aepycerus, Pantholops, Ammotragus, Pseudois) is unambiguously established. Nevertheless, the position of Neotragus and Oreotragus within the original radiation of the non-bovine bovids remains unresolved in the present analysis. It also shows that six successive rapid cladogenesis events occurred within the infraorder Pecora during the Oligocene to middle Pliocene, which coincided with periods of global climatic change. Finally, the presented supertree will be a useful framework for comparative and evolutionary biologists interested in studies involving the ruminants.  相似文献   

3.
Despite the biological and economic importance of the Cetartiodactyla, the phylogeny of this clade remains controversial. Using the supertree approach of matrix representation with parsimony, we present the first phylogeny to include all 290 extant species of the Cetacea (whales and dolphins) and Artiodactyla (even-toed hoofed mammals). At the family-level, the supertree is fully resolved. For example, the relationships among the Ruminantia appear as (((Cervidae, Moschidae) Bovidae) (Giraffidae, Antilocapridae) Tragulidae). However, due to either lack of phylogenetic study or contradictory information, polytomies occur within the clades Sus, Muntiacus, Cervus, Delphinidae, Ziphiidae and Bovidae. Complete species-level phylogenies are necessary for both illustrating and analysing biological, geographical and ecological patterns in an evolutionary framework. The present species-level tree of the Cetartiodactyla provides the first opportunity to examine comparative hypotheses across entirely aquatic and terrestrial species within a single mammalian order.  相似文献   

4.

Background

How migration evolved represents one of the most poignant questions in evolutionary biology. While studies on the evolution of migration in birds are well represented in the literature, migration in bats has received relatively little attention. Yet, more than 30 species of bats are known to migrate annually from breeding to non-breeding locations. Our study is the first to test hypotheses on the evolutionary history of migration in bats using a phylogenetic framework.

Methods and Principal Findings

In addition to providing a review of bat migration in relation to existing hypotheses on the evolution of migration in birds, we use a previously published supertree to formulate and test hypotheses on the evolutionary history of migration in bats. Our results suggest that migration in bats has evolved independently in several lineages potentially as the need arises to track resources (food, roosting site) but not through a series of steps from short- to long-distance migrants, as has been suggested for birds. Moreover, our analyses do not indicate that migration is an ancestral state but has relatively recently evolved in bats. Our results also show that migration is significantly less likely to evolve in cave roosting bats than in tree roosting species.

Conclusions and Significance

This is the first study to provide evidence that migration has evolved independently in bat lineages that are not closely related. If migration evolved as a need to track seasonal resources or seek adequate roosting sites, climate change may have a pivotal impact on bat migratory habits. Our study provides a strong framework for future research on the evolution of migration in chiropterans.  相似文献   

5.
One way to build larger, more comprehensive phylogenies is to combine the vast amount of phylogenetic information already available. We review the two main strategies for accomplishing this (combining raw data versus combining trees), but employ a relatively new variant of the latter: supertree construction. The utility of one supertree technique, matrix representation using parsimony analysis (MRP), is demonstrated by deriving a complete phylogeny for all 271 extant species of the Carnivora from 177 literature sources. Beyond providing a 'consensus' estimate of carnivore phylogeny, the tree also indicates taxa for which the relationships remain controversial (e.g. the red panda; within canids, felids, and hyaenids) or have not been studied in any great detail (e.g. herpestids, viverrids, and intrageneric relationships in the procyonids). Times of divergence throughout the tree were also estimated from 74 literature sources based on both fossil and molecular data. We use the phylogeny to show that some lineages within the Mustelinae and Canidae contain significantly more species than expected for their age, illustrating the tree's utility for studies of macroevolution. It will also provide a useful foundation for comparative and conservational studies involving the carnivores.  相似文献   

6.

Background

The family Pteropodidae comprises bats commonly known as megabats or Old World fruit bats. Molecular phylogenetic studies of pteropodids have provided considerable insight into intrafamilial relationships, but these studies have included only a fraction of the extant diversity (a maximum of 26 out of the 46 currently recognized genera) and have failed to resolve deep relationships among internal clades. Here we readdress the systematics of pteropodids by applying a strategy to try to resolve ancient relationships within Pteropodidae, while providing further insight into subgroup membership, by 1) increasing the taxonomic sample to 42 genera; 2) increasing the number of characters (to >8,000 bp) and nuclear genomic representation; 3) minimizing missing data; 4) controlling for sequence bias; and 5) using appropriate data partitioning and models of sequence evolution.

Results

Our analyses recovered six principal clades and one additional independent lineage (consisting of a single genus) within Pteropodidae. Reciprocal monophyly of these groups was highly supported and generally congruent among the different methods and datasets used. Likewise, most relationships within these principal clades were well resolved and statistically supported. Relationships among the 7 principal groups, however, were poorly supported in all analyses. This result could not be explained by any detectable systematic bias in the data or incongruence among loci. The SOWH test confirmed that basal branches' lengths were not different from zero, which points to closely-spaced cladogenesis as the most likely explanation for the poor resolution of the deep pteropodid relationships. Simulations suggest that an increase in the amount of sequence data is likely to solve this problem.

Conclusions

The phylogenetic hypothesis generated here provides a robust framework for a revised cladistic classification of Pteropodidae into subfamilies and tribes and will greatly contribute to the understanding of character evolution and biogeography of pteropodids. The inability of our data to resolve the deepest relationships of the major pteropodid lineages suggests an explosive diversification soon after origin of the crown pteropodids. Several characteristics of pteropodids are consistent with this conclusion, including high species diversity, great morphological diversity, and presence of key innovations in relation to their sister group.  相似文献   

7.
The long-fingered bats (Miniopterus sp.) are among the most widely distributed mammals in the world. However, despite recent focus on the systematics of these bats, their taxonomic position has not been resolved. Traditionally, they are considered to be sole members of Miniopterinae, 1 of 5 subfamilies within the largest family of bats, the Vespertilionidae. However, this classification has increasingly been called into question. Miniopterines differ extensively from other vespertilionids in numerous aspects of morphology, embryology, immunology, and, most recently, genetics. Recent molecular studies have proposed that the miniopterines are sufficiently distinct from vespertilionids that Miniopterinae should be elevated to full familial status. However, controversy remains regarding the relationship of the putative family, Miniopteridae to existing Vespertilionidae and to the closely related free-tailed bats, the Molossidae. We report here the first conclusive analysis of the taxonomic position of Miniopterus relative to all other bat families. We generated one of the largest chiropteran data sets to date, incorporating approximately 11 kb of sequence data from 16 nuclear genes, from representatives of all bat families and 2 Miniopterus species. Our data confirm the distinctiveness of Miniopterus, and we support previous recommendations to elevate these bats to full familial status. We estimate that they diverged from all other bat species approximately 49-38 MYA, which is comparable to most other bat families. Furthermore, we find very strong support from all phylogenetic methods for a sister group relationship between Miniopteridae and Vespertilionidae. The Molossidae diverged from these lineages approximately 54-43 MYA and form a sister group to the Miniopteridae-Vespertilionidae clade.  相似文献   

8.
For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.  相似文献   

9.
Molecular and morphological hypotheses disagree on the phylogenetic position of New Zealand's short-tailed bat Mystacina tuberculata. Most morphological analyses place Mystacina in the superfamily Vespertilionoidea, whereas molecular studies unite Mystacina with the Neotropical noctilionoids and imply a shared Gondwanan history. To date, competing hypotheses for the placement of Mystacina have not been addressed with a large concatenation of nuclear protein sequences. We investigated this problem using 7.1kb of nuclear sequence data that included segments from five nuclear protein-coding genes for representatives of 14 bat families and six laurasiatherian outgroups. We employed the Thorne/Kishino method of molecular dating, allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution on different branches on the phylogenetic tree, to estimate basal divergence times within key chiropteran clades. Maximum likelihood, minimum evolution, maximum parsimony, and Bayesian posterior probabilities all provide robust support for the association of Mystacina with the South American noctilionoids. The basal divergence within Chiroptera was estimated at 67mya and the mystacinid/noctilionoid split was calculated at 47mya. Although the mystacinid lineage is too young to have originated in New Zealand before it split from the other Gondwanan landmasses (80mya), the exact geographic origin of these lineages is still uncertain and will not be answered until more fossils are found. It is most probable that Mystacina dispersed from Australia to New Zealand while other noctilionoid bats either remained in or dispersed to South America.  相似文献   

10.
Recent advances in molecular phylogenetics indicate that the order Chiroptera is monophyletic and that one of four lineages of microbats (Rhinolophoidea) shares a common origin with megabats. Against this background we undertook a comprehensive analysis of placental evolution in bats. We defined a range of characters and character states associated with female reproduction, early development, placentation and the neonate. These were then mapped on a pre-existing hypothesis of bat relationships that represents the current view from molecular studies. Our purpose was threefold. First, on the assumption of bat monophyly, we wished to establish the stem species pattern of extant chiropterans. Secondly, we asked whether there are derived character conditions in support of a common origin for Rhinolophoidea and the megabats. Thirdly, we looked for evolutionary character transformations that characterize higher-level clades within Chiroptera, i.e. the megabats and the four lineages of microbats. The character condition occurring in the last common ancestor of Chiroptera was unequivocal for 21 of the 25 characters included in the analysis. The data did not offer support for a megabat-rhinolophoid clade or the implication that microbats are paraphyletic. However, analysis of early development, placentation and other reproductive parameters resulted in derived character conditions for the megabats as well as for each of the four major lineages of microbats.  相似文献   

11.
The phylogenetic relationships within the horseshoe bats (genus Rhinolophus) are poorly resolved, particularly at deeper levels within the tree. We present a better-resolved phylogenetic hypothesis for 30 rhinolophid species based on parsimony and Bayesian analyses of the mitochondrial cytochrome b gene and three nuclear introns (TG, THY and PRKC1). Strong support was found for the existence of two geographic clades within the monophyletic Rhinolophidae: an African group and an Oriental assemblage. The relaxed Bayesian clock method indicated that the two rhinolophid clades diverged approximately 35 million years ago and results from Dispersal Vicariance (DIVA) analysis suggest that the horseshoe bats arose in Asia and subsequently dispersed into Europe and Africa.  相似文献   

12.

Background

Although it has proven to be an important foundation for investigations of carnivoran ecology, biology and evolution, the complete species-level supertree for Carnivora of Bininda-Emonds et al. is showing its age. Additional, largely molecular sequence data are now available for many species and the advancement of computer technology means that many of the limitations of the original analysis can now be avoided. We therefore sought to provide an updated estimate of the phylogenetic relationships within all extant Carnivora, again using supertree analysis to be able to analyze as much of the global phylogenetic database for the group as possible.

Results

In total, 188 source trees were combined, representing 114 trees from the literature together with 74 newly constructed gene trees derived from nearly 45,000 bp of sequence data from GenBank. The greater availability of sequence data means that the new supertree is almost completely resolved and also better reflects current phylogenetic opinion (for example, supporting a monophyletic Mephitidae, Eupleridae and Prionodontidae; placing Nandinia binotata as sister to the remaining Feliformia). Following an initial rapid radiation, diversification rate analyses indicate a downturn in the net speciation rate within the past three million years as well as a possible increase some 18.0 million years ago; numerous diversification rate shifts within the order were also identified.

Conclusions

Together, the two carnivore supertrees remain the only complete phylogenetic estimates for all extant species and the new supertree, like the old one, will form a key tool in helping us to further understand the biology of this charismatic group of carnivores.  相似文献   

13.
The phylogenetic and geographic origins of bats (Chiroptera) remain unknown. The earliest confirmed records of bats date from the early Eocene (approximately 51 Ma) in North America with other early Eocene bat taxa also being represented from Europe, Africa, and Australia. Where known, skeletons of these early taxa indicate that many of the anatomical specializations characteristic of bats had already been achieved by the early Eocene, including forelimb and manus elongation in conjunction with structural changes in the pectoral skeleton, hind limb reorientation, and the presence of rudimentary echolocating abilities. By the middle Eocene, the diversification of bats was well underway with many modern families being represented among fossil forms. A new phylogenetic analysis indicates that several early fossil bats are consecutive sister taxa to the extant crown group (including megabats), and suggests a single origin for the order, at least by the late Paleocene. Although morphological studies have long placed bats in the Grandorder Archonta, (along with primates dermopterans, and tree shrews), recent molecular studies have refuted this hypothesis, instead strongly supporting placement of bats in Laurasiatheria. Primitively, proto-bats were likely insectivorous, under-branch hangers and elementary gliders that exploited terminal branch habitats. Recent work has indicated that a number of other mammalian groups began to exploit similar arboreal, terminal branch habitats in the Paleocene, including multituberculates, eulipotyphlans, dermopterans, and plesiadapiforms. This may offer an ecological explanation for morphological convergences that led to the erroneous inclusion of bats within Archonta: ancestral archontan groups as well as proto-bats apparently were exploiting similar arboreal habitats, which may have led to concurrent development of homoplasic morphological attributes.  相似文献   

14.
The supertree algorithm matrix representation with parsimony was used to combine existing hypotheses of coral relationships and provide the most comprehensive species-level estimate of scleractinian phylogeny, comprised of 353 species (27% of extant species), 141 genera (63%) and 23 families (92%) from all seven suborders. The resulting supertree offers a guide for future studies in coral systematics by highlighting regions of concordance and conflict in existing source phylogenies. It should also prove useful in formal comparative studies of character evolution. Phylogenetic effort within Scleractinia has been taxonomically uneven, with a third of studies focussing on the Acroporidae or its most diverse genera. Sampling has also been geographically non-uniform, as tropical, reef-forming taxa have been considered twice as often as non-reef species. The supertree indicated that source trees concur on numerous aspects of coral relationships, such as the division between robust versus complex corals and the distant relationship between families in Archaeocoeniina. The supertree also supported the existence of a large, taxonomically diverse and monophyletic group of corals with many Atlantic representatives having exsert corallites. Another large, unanticipated clade consisted entirely of solitary deep-water species from three families. Important areas of ambiguity include the relationship of Astrocoeniidae to Pocilloporidae and the relative positions of several, mostly deep-water genera of Caryophylliidae. Conservative grafting of species at the base of congeneric groups with uncontroversial monophyletic status resulted in a more comprehensive, though less resolved tree of 1016 taxa.  相似文献   

15.
16.
Major opsin (LW Rh) DNA sequence has been reported to provide useful data for resolving phylogenetic relationships among tribes of corbiculate bees based on analyses of 502 bp of coding sequence. However, the corbiculate tribes are believed to be of Cretaceous age, and strong support for insect clades of this age from small data sets of nucleotide sequence data has rarely been demonstrated. To more critically assess opsin's phylogenetic utility we generated an expanded LW Rh data set by sequencing the same gene fragment from 52 additional bee species from 24 tribes and all six extant bee families. Analyses of this data set failed to provide substantial support for monophyly of corbiculate bees, for relationships among corbiculate tribes, or for most other well-established higher-level relationships among long-tongued bees. However, monophyly of nearly all genera and tribes is strongly supported, indicating that LW Rh provides useful phylogenetic signal at lower taxonomic levels. When our expanded LW Rh data set is combined with a morphological and behavioral data set for corbiculate bees, the results unambiguously support the traditional phylogeny of the corbiculate bee tribes: (Euglossini + (Bombini + (Meliponini + Apini))). This implies a single origin of advanced eusocial behavior among bees rather than dual origins, as proposed by several recent studies.  相似文献   

17.
Partial plastid 23S and nuclear 18S rDNA genes were amplified and sequenced from 2 morphologically similar Eimeria species. E. antrozoi from a bat (Antrozous pallidus) and E. arizonensis from deer mice (Peromyscus spp.), as well as some other Eimeria species from bats and rodents. The phylogenetic trees clearly separated E. antrozoi from E. arizonensis. The phylogenies based on plastid 23S rDNA data and combined data of both plastid and nuclear genes grouped 2 bat Eimeria and 3 morphologically similar Eimeria species from rodents into 2 separate clades with high bootstrap support (100%, 3 rodent Eimeria species; 72-97%, 2 bat Eimeria species), which supports E. antrozoi as a valid species. The rodent Eimeria species did not form a monophyletic group. The 2 bat Eimeria species formed a clade with the 3 morphologically similar rodent Eimeria species (E. arizonensis, E. albigulae, E. onychomysis, all from cricetid rodents) with 100% bootstrap support, whereas 2 other rodent Eimeria species (E. nieschulzi, E. falciformis, from murid rodents) formed a separate clade with 100% bootstrap support. This suggests that the 2 Eimeria species from bats might be derived from rodent Eimeria species and may have arisen as a result of lateral host transfer between rodent and bat hosts.  相似文献   

18.
Bats (Chiroptera) represent the largest diversification of extant mammals after rodents. Here we report the results of a large-scale phylogeny of bats based on unconstrained searches for a data matrix of 804 non-chimeric, taxonomically updated bat terminals (796 species represented by a single terminal plus three species represented by ≥2 genetically distinct subspecies), able to preliminary test the systematics of most groups simultaneously. We used nine nuclear and mitochondrial DNA sequence markers fragmentary represented for ingroups (c. 90% and 64% of extant diversity at genus and species level, respectively) and 20 diverse placental outgroups. Maximum Likelihood and Parsimony analyses applied to the concatenated dataset yielded a highly resolved, variously supported phylogeny that recovered the majority of currently recognized clades at all levels of the chiropteran tree. Calibration points based on 44 key fossils allowed the Bayesian dating of bat origins at c. 4 my after the K-Pg boundary, and the determination of stem and crown ages of intraordinal clades. As expected, bats appeared nested in Laurasiatheria and split into Yinpterochiroptera and Yangochiroptera. More remarkable, all polytypic, currently recognized families were monophyletic, including Miniopteridae, Cistugidae, and Rhinonycteridae, as well as most polytypic genera with few expected exceptions (e.g., Hipposideros). The controversial Myzopodidae appeared in a novel position as sister of Emballonuroidea―a result with interesting biogeographic implications. Most recently recognized subfamilies, genera, and species groups were supported or only minor adjustments to the current taxonomy would be required, except Molossidae, which should be revised thoroughly. In light of our analysis, current bat systematics is strongly supported at all levels; the emergent perception of a strong biogeographic imprint on many recovered bat clades is emphasized.  相似文献   

19.
The correlated evolution of traits may be a principal factor in morphological evolution, but it is typically studied in genetic or developmental systems. Most studies examining phenotypic trait correlations, through analysis of morphological integration, consider only few taxa, with limited ability to test hypotheses of the influence of trait integration on morphological variation and diversity. The few comparative studies in less inclusive groups have yielded varying relationships of integration to the key factors of phylogeny and diet. In this paper, I present analyses of cranial morphological integration in 30 species from the mammalian order Carnivora, spanning eight extant families and a wide range of ecological and morphological diversity. Fifty-five cranial landmarks were captured through three-dimensional digitization of 15-22 specimens for each species. Using a node-based phylogenetic distance matrix, a significant correlation was found between similarity in patterns of integration and phylogenetic relatedness within Felidae (cats) and Canidae (dogs), but not within more inclusive clades, when size-related variation was removed. When size was included, significant correlations were found across all Caniformia, Musteloidea, Mustelidae, and Felidae. There was a significant correlation between phylogeny and morphological integration only within the higher-level clade Feliformia (cats, civets, mongooses, and hyaenas) when a branch-length-based phylogenetic distance matrix was analyzed, with and without size. In contrast, diet was significantly correlated with similarity in morphological integration in arctoid carnivorans (bears, raccoons, and weasels), but had no significant relationship with integration in feliforms or canids. These results support the proposition that evolutionary history is correlated with cranial integration across large clades, although in some smaller clades diet also exerts significant influence on the correlated evolution of traits.  相似文献   

20.
The fowls (Anseriformes and Galliformes) comprise one of the major lineages of birds and occupy almost all biogeographical regions of the world. The group contains the most economically important of all bird species, each with a long history of domestication, and is an ideal model for studying ecological and evolutionary patterns. Yet, despite the relatively large amount of systematic attention fowls have attracted because of their socio‐economic and biological importance, the species‐level relationships within this clade remain controversial. Here we used the supertree method matrix representation with parsimony to generate a robust estimate of species‐level relationships of fowls. The supertree represents one of the most comprehensive estimates for the group to date, including 376 species (83.2% of all species; all 162 Anseriformes and 214 Galliformes) and all but one genera. The supertree was well‐resolved (81.1%) and supported the monophyly of both Anseriformes and Galliformes. The supertree supported the partitioning of Anseriformes into the three traditional families Anhimidae, Anseranatidae, and Anatidae, although it provided relatively poor resolution within Anatidae. For Galliformes, the majority‐rule supertree was largely consistent with the hypothesis of sequential sister‐group relationships between Megapodiidae, Cracidae, and the remaining Galliformes. However, our species‐level supertree indicated that more than 30% of the polytypic genera examined were not monophyletic, suggesting that results from genus‐level comparative studies using the average of the constituent species’ traits should be interpreted with caution until analogous species‐level comparative studies are available. Poorly resolved areas of the supertree reflect gaps or outstanding conflict within the existing phylogenetic database, highlighting areas in need of more study in addition to those species not present on the tree at all due to insufficient information. Even so, our supertree will provide a valuable foundation for understanding the diverse biology of fowls in a robust phylogenetic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号