共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Callus BA Ekert PG Heraud JE Jabbour AM Kotevski A Vince JE Silke J Vaux DL 《Cell death and differentiation》2008,15(1):213-5; author reply 215-6
5.
Valeriya Solozobova 《Experimental cell research》2010,316(15):2434-2446
Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type.We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b. 相似文献
6.
Shimazaki K Uchida T Komine A Takahashi K 《Biochemical and biophysical research communications》2012,422(1):133-138
We studied the effects of Pin1, a regulatory molecule of the oncosuppressor p53, on both cell cycle arrest and apoptosis by treating primary mouse embryonic fibroblasts (MEFs) with etoposide. Etoposide induced G1 arrest in both wild-type and Pin1 null (pin1(-/-)) MEFs, and G2/M arrest and apoptotic cell death in MEFs lacking either p53 only (p53(-/-)) or both Pin1 and p53 (pin1(-/-)p53(-/-)). Both pin1(-/-) and pin1(-/-)p53(-/-) MEFs were enhanced the release of cytochrome c from the mitochondria, which might induce apoptosis. In response to etoposide treatment, apoptotic cell death was displayed in pin1(-/-)p53(-/-) MEFs but not in pin1(-/-) MEFs. These results suggest that p53 retards growth and suppresses etoposide-induced apoptosis in pin1(-/-) MEFs. 相似文献
7.
8.
Beta-catenin signaling is required for neural differentiation of embryonic stem cells 总被引:5,自引:0,他引:5
Culture of embryonic stem (ES) cells at high density inhibits both beta-catenin signaling and neural differentiation. ES cell density does not influence beta-catenin expression, but a greater proportion of beta-catenin is targeted for degradation in high-density cultures. Moreover, in high-density cultures, beta-catenin is preferentially localized to the membrane further reducing beta-catenin signaling. Increasing beta-catenin signaling by treatment with Wnt3a-conditioned medium, by overexpression of beta-catenin, or by overexpression of a dominant-negative form of E-cadherin promotes neurogenesis. Furthermore, beta-catenin signaling is sufficient to induce neurogenesis in high-density cultures even in the absence of retinoic acid (RA), although RA potentiates the effects of beta-catenin. By contrast, RA does not induce neurogenesis in high-density cultures in the absence of beta-catenin signaling. Truncation of the armadillo domain of beta-catenin, but not the C terminus or the N terminus, eliminates its proneural effects. The proneural effects of beta-catenin reflect enhanced lineage commitment rather than proliferation of neural progenitor cells. Neurons induced by beta-catenin overexpression either alone or in association with RA express the caudal neuronal marker Hoxc4. However, RA treatment inhibits the beta-catenin-mediated generation of tyrosine hydroxylase-positive neurons, suggesting that not all of the effects of RA are dependent upon beta-catenin signaling. These observations suggest that beta-catenin signaling promotes neural lineage commitment by ES cells, and that beta-catenin signaling may be a necessary co-factor for RA-mediated neuronal differentiation. Further, enhancement of beta-catenin signaling with RA treatment significantly increases the numbers of neurons generated from ES cells, thus suggesting a method for obtaining large numbers of neural species for possible use in for ES cell transplantation. 相似文献
9.
10.
Endogenous thioredoxin is required for redox cycling of anthracyclines and p53-dependent apoptosis in cancer cells 总被引:5,自引:0,他引:5
Apoptosis is a major mechanism of cancer cell destruction by chemotherapy and radiotherapy. The anthracycline class of antitumor drugs undergoes redox cycling in living cells producing increased amounts of reactive oxygen species and semiquinone radical, both of which can cause DNA damage, and consequently trigger apoptotic death of cancer cells. We show here that MCF-7 cells overexpressing thioredoxin (Trx) were more apoptotic in response to daunomycin. Trx overexpression in MCF-7 cells increased the generation of superoxide anion (O2*-) in anthracycline-treated cell extracts. Enhanced generation of O2- in response to daunomycin inTrx-overexpressing MCF-7 cells was inhibited by diphenyleneiodonium chloride, a general NADPH reductase inhibitor, demonstrating that Trx provides reducing equivalents to a bioreductive enzyme for redox cycling of daunomycin. Additionally Trx increased p53-DNA binding and expression in response to anthracyclines. MCF-7 cells expressing mutant redox-inactive Trx showed decreased superoxide generation, apoptosis, and p53 protein and DNA binding. In addition, down-regulation of endogenous Trx expression by small interfering RNA resulted in decreased expression of caspase-7 and cleaved poly(ADP-ribose) polymerase expression in response to daunomycin. These results suggest that endogenous Trx is required for anthracycline-mediated apoptosis of breast cancer cells. Taken together, our data demonstrate a novel pro-oxidant and proapoptotic role of Trx in anthracycline-mediated apoptosis in anthracycline chemotherapy. 相似文献
11.
12.
Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression. 相似文献
13.
14.
15.
Notch signaling activation in human embryonic stem cells is required for embryonic, but not trophoblastic, lineage commitment 总被引:2,自引:0,他引:2
Yu X Zou J Ye Z Hammond H Chen G Tokunaga A Mali P Li YM Civin C Gaiano N Cheng L 《Cell Stem Cell》2008,2(5):461-471
The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(14)
Comment on: Wei QX, et al. Cell Cycle 2011; 10:1261-70. 相似文献
17.
The role of the tumor suppressor protein p53 in apoptosis of mouse hepatoma cells was studied. Different lines were used which were either p53 wild-type or carried various types of heterozygous or homozygous p53 mutations. The presence of mutations was demonstrated to correlate with a lack in transactivating activity of p53. While UV-light effectively produced apoptosis in cells of all lines, irrespective of their p53 mutational status, gamma-irradiation induced the formation of micronuclei but failed to induce apoptosis. Both UV- and gamma-irradiation led to nuclear accumulation and increases in p53 protein in p53 wild-type cells. Similarly, no significant differences in apoptotic response between p53 wild-type and p53 mutated cells were seen with other apoptotic stimuli like CD95/APO-1/Fas or TNFalpha. These data suggest that wild-type p53 is not required for induction of apoptosis in mouse hepatoma cells which may explain the apparent lack of p53 mutations in mouse liver tumors. 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1133-1138
Upon treatment with some DNA damaging agents, human H1299 tumor-derived cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53Q22/S23) undergo apoptosis. In cells expressing either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Furthermore, silencing of PIDD (a factor previously shown to be required for caspase 2 activation) by siRNA suppresses apoptosis by both wild-type p53 and p53Q22/S23. Despite the finding that caspase 2 is essential for DNA damage-facilitated, p53-mediated apoptosis, induction of wild-type p53 (with or without DNA damage) resulted in a reduction of caspase 2 mRNA and protein levels. In this study we sought to provide a mechanism for the negative regulation of caspase 2 by p53 as well as provide insight as to why p53 may repress a key mediator of p53-dependent apoptosis. Mechanistically, we show that DNA binding and/or transactivation domains of p53 are crucial for mediating transrepression. Further, expression of p21 (in p53-null cells inducibly expressing p21) is sufficient to mediate repression of caspase 2. Deletion of p21 or E2F-1 not only abrogated repression of caspase 2, but also stimulated the expression of caspase 2 above basal levels, implicating the requirement for an intact p21/Rb/E2F pathway in the down-regulation of caspase 2. As this p53/p21-dependent repression of caspase 2 can occur in the absence of DNA damage, caspase 2 repression does not simply seem to be a consequence of the apoptotic process. Down-regulation of caspase 2 levels by p53 may help to determine cell fate by preventing cell death when unnecessary. 相似文献
19.
20.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1669-1670
Comment on: Lee KH, et al. Proc Natl Acad Sci USA 2010; 107:69-74. 相似文献