首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Using predictive species distribution and ecological niche modelling our objectives are: (1) to identify important climatic drivers of distribution at regional scales of a locally complex and dynamic system – California sage scrub; (2) to map suitable sage scrub habitat in California; and (3) to distinguish between bioclimatic niches of floristic groups within sage scrub to assess the conservation significance of analysing such species groups. Location Coastal mediterranean‐type shrublands of southern and central California. Methods Using point localities from georeferenced herbarium records, we modelled the potential distribution and bioclimatic envelopes of 14 characteristic sage scrub species and three floristic groups (south‐coastal, coastal–interior disjunct and broadly distributed species) based upon current climate conditions. Maxent was used to map climatically suitable habitat, while principal components analysis followed by canonical discriminant analysis were used to distinguish between floristic groups and visualize species and group distributions in multivariate ecological space. Results Geographical distribution patterns of individual species were mirrored in the habitat suitability maps of floristic groups, notably the disjunct distribution of the coastal–interior species. Overlap in the distributions of floristic groups was evident in both geographical and multivariate niche space; however, discriminant analysis confirmed the separability of floristic groups based on bioclimatic variables. Higher performance of floristic group models compared with sage scrub as a whole suggests that groups have differing climate requirements for habitat suitability at regional scales and that breaking sage scrub into floristic groups improves the discrimination between climatically suitable and unsuitable habitat. Main conclusions The finding that presence‐only data and climatic variables can produce useful information on habitat suitability of California sage scrub species and floristic groups at a regional scale has important implications for ongoing efforts of habitat restoration for sage scrub. In addition, modelling at a group level provides important information about the differences in climatic niches within California sage scrub. Finally, the high performance of our floristic group models highlights the potential a community‐level modelling approach holds for investigating plant distribution patterns.  相似文献   

2.
Summary Coastal sage scrub is a community found extensively throughout cismontane California south of San Francisco, but has been surprisingly little studied. In the study area, which extends from Santa Barbara to the San Gorgonio Pass, two major floristic groupings can be found. In the basin bounded coastwards by a line drawn along the axis of the Santa Ana Mountains a large number of native and introduced annual herbs and a few shrubs (e.g.Encelia farinosa), rare or absent in the remainder of the study area, characterize one floristic group. In the coastal region the variety of shrub species increases, and the herbs are predominantly native and more restricted in number. Eleven groups defined by physiognomy, structure and species dominance, and arbitrarily called associations, are recognized. These associations can be grouped into four physiognomic-structural types which transgress the boundaries of the floristic groups. The results of this study and the limited previous literature suggest that Californian coastal sage scrub could be divided, mainly on floristic criteria, into Venturan, San Diegan and Riversidian sage.Plant nomenclature follows Munz & Keek (1968).We gratefully acknowledge the financial help provided by the Department of Earth Sciences, University of California, Riverside, and the aid in plant identification provided by Mr. Oscar Clarke, Museum Scientist, Department of Biology, University of California, Riverside.  相似文献   

3.
Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.  相似文献   

4.
5.
Aim Applying water‐energy dynamics and heterogeneity theory to explain species richness via remote sensing could allow for the regional characterization and monitoring of vegetation community assemblages and their environment. We assess the relationship of multi‐temporal normalized difference vegetation index (NDVI) to plant species richness in vegetation communities. Location California, USA. Methods Sub‐regions containing species inventories for chaparral, coastal sage scrub, foothill woodland, and yellow pine forest communities were intersected with a vegetation community map and an AVHRR NDVI time series for 1990, 1991, 1992, 1995 and 1996. Principal components analysis reduced the AVHRR data to three variables representing the sum and temporal trajectories of NDVI within each community. A fourth variable representing heterogeneity was tested using the standard deviation of the first component. Quadratic forms of these variables were also tested. Species richness was analysed by stepwise regression. Results Chaparral, coastal sage scrub, and yellow pine forest had the best relationships between species richness and NDVI. Richness of chaparral was related to NDVI heterogeneity and spring greenness (r2 varied between 0.26 and 0.62 depending on year of NDVI data). Richness of coastal sage scrub was nonlinearly related to annual NDVI and heterogeneity (r2 0.63–0.81), with peak richness at intermediate values. Foothill woodland richness was related to heterogeneity in a monotonic curvilinear fashion (r2 0.28–0.35). Yellow pine forest richness was negatively related to spring greenness and positively related to heterogeneity (r2 0.40–0.46). Main Conclusions While NDVI's relationship to species richness varied, the selection of NDVI variables was generally consistent across years and indicated that spatial variability in NDVI may reflect important patterns in water‐energy use that affect plant species richness. The principal component axis that should correspond closely with annual mean NPP showed a less prominent role. We conclude that plant species richness for coarse vegetation associations can be characterized and monitored at a regional scale and over long periods of time using relatively coarse resolution NDVI data.  相似文献   

6.
The escape of ornamental plants is a main pathway of invasion into many ecosystems. Non-native plants can alter basal resources and abiotic factors leading to effects that ripple throughout an ecosystem. Invertebrates mediate these effects—responding quickly to abiotic and primary producer changes and, in turn, influencing other species. Invasions are of particular concern in the coastal sage scrub ecosystems of Southern California, where habitat loss and urban encroachment increase invasive species propagule sources and decrease native community resistance. The introduced annual Chrysanthemum coronarium (crown daisy) is a common invader with largely undocumented community-level effects. Our study tested the relationships between the invasive Chrysanthemum and a coastal scrub invertebrate community using a field study at the Tijuana River Estuary. We found similar or lower abundances and diversity of canopy fauna in the presence of Chrysanthemum. Community composition dramatically differed, however, in the presence Chrysanthemum, which was associated with higher abundances of dipterans, wasps and flower beetles, and lower abundances of hemipterans and thysanopterans than native shrubs. Differences in communities were consistent at the species- and order-levels, and were associated with the generally greater plant biomass and shadier conditions afforded by the natives. This study reveals that even a proportionally small amount of Chrysanthemum may shift the invertebrate community through alterations of abiotic properties and plant biomass. We recommend that Chrysanthemum be removed at the first sign of invasion or that spread is prevented since effects on the invertebrate community are dramatic and occur quickly.  相似文献   

7.
Measures of resilience: the response of coastal sage scrub to fire   总被引:1,自引:0,他引:1  
Measures of four components of resilience are developed and used to quantify the response of coastal sage scrub to fire in southern California: (1) elasticity (rate of recovery following disturbance), (2) amplitude (threshold of disturbance beyond which recovery to the original state no longer occurs), (3) malleability (extent of alteration of the new stable-state from the original) and (4) damping (extent and duration of oscillation in an ecosystem parameter following disturbance). Vegetation and soil properties measured before fire, and for the first 5–6 yr after fire on four coastal (Venturan association) and four inland (Riversidian association) sites of coastal sage were used to follow changes. In addition, results from a simulation model of post-fire succession in Venturan coastal sage scrub (the FINICS model of Malanson) were used to examine resilience behavior over a 200 yr period. Resilience behavior of coastal sage scrub is critically influenced by the presence of a competitive mix of inherently strongly and weakly resprouting species. Sites dominated by weak resprouters exhibit lower elasticity and less damping of year-to-year fluctuations in composition in the early post-fire years. Sites with a mixture of weak and strong resprouters have a lower threshold of disturbance (amplitude) before species extirpation occurs, a result intensified by a higher frequency of disturbance. Malleability is also greater in these systems under higher disturbance frequency.Nomenclature follows. P.A. Munz, 1974. A Flora of Southern California. Univ. California Press.  相似文献   

8.
Non‐native plant invasions can alter nutrient cycling processes and contribute to global climate change. In southern California, California sage scrub (hereafter sage scrub), a native shrub‐dominated habitat type in lowland areas, has decreased to <10% of its original distribution. Postdisturbance type‐conversion to non‐native annual grassland, and increasingly to mustard‐dominated invasive forbland, is a key contributor to sage scrub loss. To better understand how type‐conversion by common invasive annuals impacts carbon (C) and nitrogen (N) storage in surface soils, we examined how the identity of the invader (non‐native grasses, Bromus spp.; and non‐native forbs, Brassica nigra), microbial concentrations, and soil properties interact to influence soil nutrient storage in adjacent native and invasive habitat types at nine sites along a coast to inland gradient. We found that the impact of type‐conversion on nutrient storage was contingent upon the invasive plant type. Sage scrub soils stored more C and N than non‐native grasslands, whereas non‐native forblands had nutrient storage similar to or higher than sage scrub. We calculate that >940 t C km?2 and >60 t N km?2 are lost when sage scrub converts to grass‐dominated habitat, demonstrating that grass invasions are significant regional contributors to greenhouse gas emissions. We found that sites with greater total C and N storage were associated with high cation exchange capacities and bacterial concentrations. Non‐native grassland habitat type was a predictor of lower total C, and soil pH, which was greatest in invasive habitats, was a predictor of lower total N. We demonstrate that modeling regional nutrient storage requires accurate classification of habitat type and fine‐scale quantification of cation exchange capacity, pH, and bacterial abundance. Our results provide evidence that efforts to restore and conserve sage scrub enhance nutrient storage, a key ecosystem service reducing atmospheric CO2 concentrations.  相似文献   

9.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

10.
Aims: The primary objective of this study is to map the distribution and quantify the cover of vegetation alliances over the entirety of San Clemente Island (SCI). To this end, we develop and evaluate the mapping method of hierarchical object‐based classification with a rule‐based expert system. Location: San Clemente Island, California, USA. Methods: We developed and tested an approach based on hierarchical object‐based classification with a rule‐based expert system to effectively map vegetation communities on SCI following the Manual of California Vegetation classification system. In this mapping approach, the shrub species defining each vegetation community and non‐shrub growth forms were first mapped using aerial imagery and lidar data, then used as input in an automated mapping rule set that incorporates the percent cover rules of a field‐based mapping rule set. Results: The final vegetation map portrays the distribution of 19 vegetation communities across SCI, with the largest areas comprised of California Annual and Perennial Grassland (35%) and three types of coastal sage scrub and maritime succulent scrub, comprising a combined 53% of the area. Map accuracy was assessed to be 79% based on fuzzy methods and 61% with a traditional accuracy assessment. The accuracy of tree identification was assessed to be 81%, but species‐level tree accuracy was 45%. Conclusions: Semi‐automated approaches to vegetation community mapping can produce repeatable maps over large spatial extents that facilitate ecological management efforts. However, some low‐statured shrub community types were difficult to differentiate due to patchy canopies of co‐occurring species including abundant non‐native grasses characteristic of complex disturbance histories. Species‐level tree mapping accuracy was low due to the difficulty of identifying species within poorly illuminated canyons, resulting from sub‐optimal image acquisition timing.  相似文献   

11.
Many semi-arid shrublands in the western US have experienced invasion by a suite of exotic grasses and forbs that have altered community structure and function. The effect of the exotic grasses in this area has been studied, but little is known about how exotic forbs influence the plant community. A 3-year experiment in southern California coastal sage scrub (CSS) now dominated by exotic grasses was done to investigate the influence of both exotic grasses (mainly Bromus spp.) and exotic forbs (mainly Erodium spp.) on a restoration seeding (9 species, including grasses, forbs, and shrubs). Experimental plots were weeded to remove one, both, or neither group of exotic species and seeded at a high rate with a mix of native species. Abundance of all species varied with precipitation levels, but seeded species established best when both groups of exotic species were removed. The removal of exotic grasses resulted in an increase in exotic and native forb cover, while removal of exotic forbs led to an increase in exotic grass cover and, at least in one year, a decrease in native forb cover. In former CSS now converted to exotic annual grassland, a competitive hierarchy between exotic grasses and forbs may prevent native forbs from more fully occupying the habitat when either group of exotics is removed. This apparent competitive hierarchy may interact with yearly variation in precipitation levels to limit restoration seedings of CSS/exotic grassland communities. Therefore, management of CSS and exotic grassland in southern California and similar areas must consider control of both exotic grasses and forbs when restoration is attempted.  相似文献   

12.
Annual legumes are often used as nurse plants for restoration projects, but two commonly used legume species were competitors at all densities with Artemisia californica (California sagebrush), a dominant shrub of southern California coastal sage scrub. Survival of Artemisia was not reduced by the lowest densities of the native Lupinus succulentus (arroyo lupine) at ratios of Artemisia to Lupinus of 1:1 or 1:3 or by the exotic Trifolium hirtum (rose clover) at the 1:1 density, but its survival was as low as 4% at the highest densities of Trifolium (1:16) and 1:32). Overall, Trifolium was more detrimental to survival of Artemisia, but the biomass of Artemisia was reduced by 90% or more in mixtures with both legumes even at the lowest densities of 1:1. The total soil nitrogen either did not change or decreased in two of the mixtures between planting and harvest dates, indicating that the legumes not only did not add nitrogen to the soil within one growing season but even depleted it in these two cases. Whereas Lupinus had greater aboveground bio-mass than Trifolium, it had a lower root density than Trifolium. The Artemisia root system was more shallow than either Trifolium or Lupinus, possibly explaining the poor growth of Artemisia in mixtures, The legumes were one to two orders of magnitude greater in aboveground biomass than Artemisia at the 1:1 ratio and therefore may be inappropriate choices as nurse plants. There is no evidence from this study that either of these legumes can act as nurse plants, even at the lowest ratio of one nurse plant to on shrub. Nurse plants are probably more important in harsher environments than in coastal sage scrub.  相似文献   

13.
Foraging ecology of the California gnatcatcher deduced from fecal samples   总被引:1,自引:0,他引:1  
The California gnatcatcher is a threatened species essentially restricted to coastal sage scrub habitat in southern California. Its distribution and population dynamics have been studied intensely, but little is known about its diet. We identified arthropod fragments in 33 fecal samples of the California gnatcatcher to gain insight into its foraging ecology and diet. Fecal samples were collected from adult males, adult females, fledglings, and nestlings. Leaf- and planthoppers (Homoptera) and spiders (Araneae) predominated numerically in samples. Spider prey was most diverse, with eight families represented. True bugs (Hemiptera) and wasps, bees, and ants (Hymenoptera) were only minor components of the gnatcatcher diet. Gnatcatcher adults selected prey to feed their young that was larger than expected given the distribution of arthropod size available in their environment, and chicks were provisioned with larger prey items and significantly more grasshoppers and crickets (Orthoptera) and spiders than adults consumed themselves. Both adults and young consumed more sessile than active prey. Further studies are needed to determine whether arthropods sampled in coastal sage scrub that are common in fecal samples are good indicators of California gnatcatcher habitat. Received: 30 December 1998 / Accepted: 28 April 1999  相似文献   

14.
Natural ecosystems globally are often subject to multiple human disturbances that are difficult to restore. A restoration experiment was done in an urban fragment of native coastal sage scrub vegetation in Riverside, California that has been subject to frequent fire, high anthropogenic nitrogen deposition, and invasion by Mediterranean annual weeds. Hand cultivation and grass‐specific herbicide were both successful in controlling exotic annual grasses and promoting establishment of seeded coastal sage scrub vegetation. There was no native seedbank left at this site after some 30 years of conversion to annual grassland, and the only native plants that germinated were the seeded shrubs, with the exception of one native summer annual. The city green‐waste mulch used in this study (C:N of 39:1) caused short‐term N immobilization but did not result in decreased grass density or increased native shrub establishment. Seeding native shrubs was successful in a wet year in this Mediterranean‐type climate but was unsuccessful in a dry year. An accidental spring fire did not burn first‐year shrubs, although adjacent plots dominated by annual grass did burn. The shrubs continued to exclude exotic grasses into the second growing season, suggesting that successful shrub establishment may reduce the frequency of the fire return interval.  相似文献   

15.
I conducted small-mammal trapping surveys on a desert scrub restoration site in Palm Springs, California, to document concomitant recovery of the rodent community. These surveys were conducted following quantitative vegetation sampling efforts that indicated that a predefined successful restoration criterion of 15% total shrub cover had been met throughout most of the area. But shrub cover, native shrub cover, herb cover, native herb cover, total cover, and total native cover remained significantly lower in the restoration area than in undeveloped desert scrub immediately surrounding the site. Native herb species richness was also generally lower in the restoration area. Despite these vegetation differences, rodent diversity, evenness, and abundance were very similar between the restoration and natural areas (they were consistently slightly higher in the restoration area). More diverse microhabitats, proximity to water, and reduced competition with harvester ants may have contributed to this outcome. If ecosystem restoration is the goal, reestablishment of a faunal community in restored habitat, rather than surpassing a predefined percent cover of vegetation, may be a better indicator of success, because plant cover proved to be a poor predictor of mammal success.  相似文献   

16.
A survey of the xeric shrublands of Pacific coastal North America from San Francisco to El Rosario (Mexico), including the inner Channel Islands, was conducted using 99 sample sites of 0.063 ha size. TWINSPAN classification and DECORANA ordination confirmed the existence of two plant formations, distinguishable physiognomically: coastal sage scrub and coastal succulent scrub. Within coastal sage scrub, four floristic associations were recognized: Diablan, Venturan, Riversidian and Diegan. Within coastal succulent scrub, two floristic associations were defined: Martirian and Vizcainan. These associations occur in distinct geographical regions following the coastline, with the Riversidian association occurring in the basin inland from Venturan and Diegan regions. Their locations are strongly correlated with differences in evapotranspirative stress regimes. The Channel Island sites show affinities to several of the mainland associations. The Venturan association can be further subdivided floristically into two subassociations, dominated by Salvia mellifera and S. leucophylla respectively. These subassociations which are coextensive geographically at a regional scale, typically do not intermingle at a local scale but often meet along sharp boundaries in the landscape. The dominant species segregate by moisture preference, S. mellifera preferring coarser-texture soils and more southerly aspects than S. leucophylla. Richness and equitability of these sites are depressed relative to other xeric shrubland sites, reflecting the fact that the two subassociations partition the Venturan flora into substantially non-overlapping subsets of species. This segregation of associates between the two Salvia dominance types strongly suggests biotic influence of the dominants on subordinate species, perhaps mediated by allelopathy. This biotic interaction, leading to relatively strong floristic subassociations segregating independently in the landscape, would provide an example of the holistic community structure referred to by Clements and his followers, embedded within a larger pattern of continuity in species distributions.Nomenclature follows Munz & Keck (1959), Munz (1974) and Wiggins (1980).I am grateful to the following for research assistance: S. Coon, E. Hobbs, S. Lavinger, J. F. O'Leary, K. R. Preston, B. Rich and A. Troeger. I also thank the numerous public and private land owners who permitted access to the study sites. This research is based upon work supported by the National Science Foundation under grant DEB 76-81712.  相似文献   

17.
Mordecai EA 《PloS one》2012,7(6):e39083
Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.  相似文献   

18.
Within global biodiversity hotspots such as the California Floristic Province, local patterns of diversity must be better understood to prioritize conservation for the greatest number of species. This study investigates patterns of vascular plant diversity in relation to coast–inland environmental gradients in the shrublands of Central California known as northern coastal scrub. We sampled coastal shrublands of the San Francisco Bay Area at coastal and inland locations, modeled fine‐scale climatic variables, and developed an index for local exposure to maritime salts. We compared diversity, composition, and structure of the coastal and inland plots using indirect gradient analysis and estimated species accumulation using rarefaction curves. Coastal plots were significantly higher in alpha, beta, and gamma diversity than inland plots. Plant diversity (effective species number) in coastal plots was 2.1 times greater than inland plots, and beta diversity was 1.9 times greater. Estimated richness by rarefaction was 2.05 times greater in coastal sites than inland sites. Salt deposition and water availability were the abiotic process most strongly correlated with increased maritime plant diversity and compositional differences. Stands of northern coastal scrub on the immediate coast with higher maritime influence exhibit markedly higher plant diversity than most interior stands, paralleling previous work in other vegetation types in this region. These studies suggest that the California coastline deserves special consideration for botanical conservation. Fine‐scale climatic models of cloud frequency, water availability, and the salt deposition index presented here can be used to define priority areas for plant conservation in California and other coastal regions worldwide.  相似文献   

19.
Plant adaptations to the environment are limited, and therefore plants in similar environments may display similar functional and physiological traits, a pattern termed functional convergence. Evidence was examined for functional convergence among 28 evergreen woody shrubs from three plant communities of the semi-arid winter rainfall region of southern California. Both leaf and water relations traits were examined, including seasonal stomatal conductance (gs), specific leaf area (SLA), leaf specific conductivity (Kl), seasonal water potential (Psi w), stem cavitation resistance (Psi 50), and xylem density. Species display community-specific suites of xylem and leaf traits consistent with different patterns of water use among communities, with coastal sage scrub species utilizing shallow pulses of water, Mojave Desert scrub species relying on deeper water reserves, and chaparral species utilizing both shallow and deep moisture reserves. Communities displayed similar degrees of water stress, with a community-level minimum Psi w (Psi wmin) of c. -4.6 Mpa, similar to other arid communities. Pooled across sites, there was a strong correlation between Psi wmin and xylem density, suggesting that these traits are broadly related and predictive of one another. This comparative community physiology approach may be useful in testing hypotheses of functional convergence across structurally similar semi-arid communities.  相似文献   

20.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号