首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of either acetylcholine (ACh) or the ionophore A23187 to synaptopsomes resulted in a selective stimulation of 32Pi incorporation into phosphatidate (PhA) and phosphatidylinositol (PhI), while the labeling of phosphatidylinositol phosphate (PhIP) and phosphatidylinositol diphosphate (PHIP2) was reduced. The inclusion of both ACh and A23187 resulted in a synergistic increase in PhA and PhI labeling, and a synergistic decrease in the labeling of the polyphosphoinositides. Added calcium was not required, although inclusion of EGTA prevented the alterations in lipid labeling. The enhanced labeling of PhA and PhI by ACh or A23187 was not the result of either an increase in the radioactivity of the precursor [32P]ATP pool, or increased de novo synthesis of these lipids as judged from the incorporation of [3H]glycerol, [3H]glucose or [3H]myo-inositol. The synergistic alterations in PhA, PhI, and polyphosphoinositide labeling were observed with ionophore only in the presence of selected muscarinic agonists, and with the inclusion of atropine or scopolamine the labeling reverted to a value which approximated that seen with the ionophore alone. Synergistic effects on phospholipid labeling with muscarinic agonists were also obtained with the calcium ionophore, ionomycin, but not with X537A, monensin, or valinomycin. Neither the apparent number of muscarinic receptors present, nor their affinity for the ligand were altered by the presence of A23187. In prelabeling experiments, A23187 accelerated the loss of [32P]label from PhIP and PhIP2, and the rate of loss was further augmented by the addition of ACh. Neither agent produced comparable effects on the breakdown of prelabeled PhA or PhI. It is suggested that phosphodiesteratic cleavage of the polyphosphoinositides might account for both the decrease in labeled PhIP and PhIP2 and increased labeling of PhA and PhI via the availability of resultant diglyceride. In any event, the results demonstrate that the turnover of polyphosphoinositides, in addition to that of PhA and PhI, is linked to the activation of muscarinic receptors.  相似文献   

2.
Carbamylcholine enhances the labeling of phosphatidate and phosphatidylinositol from 32Pi in nerve endings. Approximately 74% of labeled phosphatidate and 85% of labeled phosphatidylinositol produced on muscarinic stimulation are accounted for by tetraenoic species, as detected by argentation TLC. Incubation of membranes derived from nerve endings with [gamma-32P]ATP under conditions of phosphodiesteratic degradation of endogenous polyphosphoinositides resulted in increased labeling of phosphatidate. Approximately 78% of the newly formed phosphatidate was in a tetraenoic fraction. It is concluded that in muscarinically stimulated nerve endings, the diacylglycerol moiety is conserved following diacylglycerol release from polyphosphoinositides through its resynthesis to inositol lipid via phosphatidate.  相似文献   

3.
Abstract: The addition of either carbachol or muscarinic agonists to cultured bovine adrenal chromaffin cells results in a selective stimulation of phosphatidate (PhA) and phosphatidylinositol (PhI) labeling from 32Pi and [3H]glycerol that can be inhibited by the inclusion of atropine, but not d -tubocurarine. In contrast, increased catecholamine secretion is observed on the addition of carbachol or nicotinic agonists and is inhibited by d -tubocurarine but not by atropine. Added calcium is essential for catecholamine secretion but not for stimulated phospholipid labeling. Chelation of endogenous Ca2+ with EGTA does, however, inhibit the stimulated phospholipid labeling. These results suggest that stimulated phospholipid labeling in the bovine chromaffin cell and catecholamine secretion are separate and distinct processes.  相似文献   

4.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

5.
The possibility that Ca2+ ions are involved in the control of the increased phosphatidylinositol turnover which is provoked by alpha-adrenergic or muscarinic cholinergic stimulation of rat parotid-gland fragments has been investigated. Both types of stimulation provoked phosphatidylinositol breakdown, which was detected either chemically or radiochemically, and provoked a compensatory synthesis of the lipid, detected as an increased rate of incorporation of 32Pi into phosphatidylinositol. Acetylcholine had little effect on the incorporation of labelled glycerol, whereas adrenaline stimulated it significantly, but to a much lower extent than 32P incorporation: this suggests that the response to acetylcholine was entirely accounted for by renewal of the phosphorylinositol head-group of the lipid, but that some synthesis de novo was involved in the response to adrenaline. The responses to both types of stimulation, whether measured as phosphatidylinositol breakdown or as phosphatidylinositol labelling, occurred equally well in incubation media containing 2.5 mm-Ca2+ or 0.2 mm-EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid]. Incubation with a bivalent cation ionophore (A23187) led to a small and more variable increase in phosphatidylinositol labelling with 32Pi, which occurred whether or not Ca2+ was available in the extracellular medium: this was not accompanied by significant phosphatidylinositol breakdown. Cinchocaine, a local anaesthetic, produced parallel increases in the incorporation of Pi and glycerol into phosphatidylinositol. This is compatible with its known ability to inhibit phosphatidate phosphohydrolase (EC 3.1.3.4) and increase phosphatidylinositol synthesis de novo in other cells. These results indicate that the phosphatidylinositol turnover evoked by alpha-adrenergic or muscarinic cholinergic stimuli in rat parotid gland probably does not depend on an influx of Ca2+ into the cells in response to stimulation. This is in marked contrast with the K+ efflux from this tissue, which is controlled by the same receptors, but is strictly dependent on the presence of extracellular Ca2+. The Ca2+-independence of stimulated phosphatidylinositol metabolism may mean that it is controlled through a mode of receptor function different from that which controls other cell responses. Alternatively, it can be interpreted as indicating that stimulated phosphatidylinositol breakdown is intimately involved in the mechanisms of action of alpha-adrenergic and muscarinic cholinergic receptor systems.  相似文献   

6.
Synaptosomes isolated from guinea pig brain cortex were stimulated electrically in a medium containing [32P]-orthophosphate. The electrical stimulation caused increased labelling of phosphatidic acid in a synaptic vesicle fraction prepared by osmotic shock of the incubated synaptosomes. Electrical stimulation also provokes transmitter release from the synaptosomes. Both increased phosphatidate labelling and transmitter release required calcium ions in the medium. The effects are discussed in relation to earlier work with acetylcholine and the possible involvement of membrane phosphatidic acid in transmitter release by exocytosis.  相似文献   

7.
1. The mechanism of acetylcholine-stimulated breakdown of phosphatidyl-myo-inositol 4,5-bisphosphate and its dependence on extracellular Ca(2+) was investigated in the rabbit iris smooth muscle. 2. Acetylcholine (50mum) increased the breakdown of phosphatidylinositol bisphosphate in [(3)H]inositol-labelled muscle by 28% and the labelling of phosphatidylinositol by 24% of that of the control. Under the same experimental conditions there was a 33 and 48% increase in the production of (3)H-labelled inositol trisphosphate and inositol monophosphate respectively. Similarly carbamoylcholine and ionophore A23187 increased the production of these water-soluble inositol phosphates. Little change was observed in the (3)H radioactivity of inositol bisphosphate. 3. Both inositol trisphosphatase and inositol monophosphatase were demonstrated in subcellular fractions of this tissue and the specific activity of the former was severalfold higher than that of the latter. 4. The acetylcholine-stimulated production of inositol trisphosphate and inositol monophosphate was inhibited by atropine (20mum), but not tubocurarine (100mum); and it was abolished by depletion of extracellular Ca(2+) with EGTA, but restored on addition of low concentrations of Ca(2+) (20mum). 5. Calcium-antagonistic agents, such as verapamil (20mum), dibenamine (20mum) or La(3+) (2mm), also abolished the production of the water-soluble inositol phosphates in response to acetylcholine. 6. Release of inositol trisphosphate from exogenous phosphatidylinositol bisphosphate by iris muscle microsomal fraction (;microsomes') was stimulated by 43% in the presence of 50mum-Ca(2+). 7. The results indicate that increased Ca(2+) influx into the iris smooth muscle by acetylcholine and ionophore A23187 markedly activates phosphatidylinositol bisphosphate phosphodiesterase and subsequently increases the production of inositol trisphosphate and its hydrolytic product inositol monophosphate. The marked increase observed in the production of inositol monophosphate could also result from Ca(2+) activation of phosphatidylinositol phosphodiesterase. However, there was no concomitant decrease in the (3)H radioactivity of this phospholipid.  相似文献   

8.
We have found a phospholipase D activity in the postnuclear fraction of human neutrophils which is stimulated by incubation of cells with the calcium ionophore A23187. The phospholipase D activity was assessed by both phosphatidate formation and free inositol release from phosphatidylinositol substrate. The phospholipase D activity shows an optimum pH of 7.5 and hydrolyzes specifically phosphatidylinositol. These results suggest that this phosphatidylinositol-specific phospholipase D can play a role in cell activating process.  相似文献   

9.
Summary Pure cholinergic synaptosomes isolated from the electric organ ofTorpedo marmorata were stimulated by calcium ionophore A-23187. The effect of time course of stimulation on the changes in intramembrane particles (IMPs) on presynaptic membranes was studied by quickfreezing and aldehyde-fixation freeze-fracture. We showed that the decrease of small-particle density at the P-face and the increase of large-particle density at the E-face was maximum after 30 sec of A-23187 stimulation. Later, the density of synaptic vesicles decreased. We suggest that the redistribution of IMPs on the presynaptic membrane and acetylcholine (ACh) release from pure cholinergic synaptosomes have a similar time course when triggered by A-23187  相似文献   

10.
The release of [3H]dopamine stimulated by depolarization with 15 mM KCl of superfused rat striatal synaptosomes was potentiated by acetylcholine through the activation of presynaptic muscarinic receptors. In contrast, acetylcholine did not potentiate the release of [3H]dopamine elicited by d-amphetamine nor that caused by the calcium ionophore A23187. The dopamine carrier blocker nomifensine prevented the releasing action of amphetamine but not that of acetylcholine. The results suggest that the activation of muscarinic receptors on dopamine terminals in the rat corpus striatum selectively affects the calcium-dependent depolarization-induced release of the [3H]catecholamine. Moreover, the [3H]dopamine release caused by acetylcholine seems to occur independently of the membrane dopamine carrier.  相似文献   

11.
The intracerebral injection of 32Pi into guinea-pig cortex resulted in a steady rate of incorporation into all phospholipids over a 20 h period. The specific radioactivities of phosphatidate and phos-phatidylinositol in synaptosomes prepared from cortex prelabelled, in vivo, were at a maximum after 2 h and the respective activities were 3–8 times higher than in whole cortex. This peak in labelling corresponded with the maximum specific activity of the brain ATP. No similar differential labelling pattern was observed for phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine. Electrical stimulation of the prelabelled synaptosomes produced a rapid drop in the specific activity of phosphatidylinositol and phosphatidate and an increase in the specific activity of CDP-diacylglycerol. The specific activity of synaptosomal ATP was not affected. Study of the subsynaptosomal fractions obtained after osmotic rupture of the synaptosomes revealed that the most highly labelled phosphatidylinositol was in the synaptic vesicle fraction (D) and the most active phosphatidate was in a ‘microsomal’ fraction (E). Electrical stimulation caused a loss of phosphatidylinositol radioactivity from fraction D and a loss of phosphatidate radioactivity from fraction E. The specific activity of these lipids in other fractions was not affected. A possible role for presynaptic phosphatidylinositol is suggested.  相似文献   

12.
During the acetylcholine-stimulated loss of phosphatidylinositol and gain in the level of phosphatidic acid in mouse pancreas, there is a selective increase in stearic and arachidonic acids in phosphatidic acid. The amounts parallel the decrease in phosphatidylinositol, which contains predominantly these two fatty acids. Addition of atropine to stimulated tissue reverses the changes. There is a selective disappearance of the stearoyl, arachidonoyl phosphatidic acid, and phosphatidylinositol increases. The changes support the hypothesis that the 1-stearoyl, 2-arachidonoyl diglyceride backbone of phosphatidylinositol becomes phosphatidic acid during acetylcholine stimulation, and is transformed back to phosphatidylinositol on reversion to the unstimulated state.  相似文献   

13.
R A Harris  D Fenner  S W Leslie 《Life sciences》1983,32(23):2661-2666
Several physiological stimuli, including neuronal depolarization, increase the production of phosphatidate (PA) from phosphatidylinositol (PI) and increase calcium fluxes across cell membranes. To determine if breakdown of PI is required for neuronal calcium uptake, we tested inhibitors of PI-specific phospholipase C on depolarization-dependent uptake of calcium by isolated brain synaptosomes. At a concentration of 0.1 mM these inhibitors reduced calcium uptake produced by depolarization for 1 to 3 sec, but did not affect uptake due to more prolonged depolarization. Exogenous PA also stimulated calcium accumulation by synaptosomes and this uptake was not reduced by the enzyme inhibitors. These results suggest that the rapid calcium influx produced by neuronal depolarization may be mediated by the breakdown of PI.  相似文献   

14.
1. The effects of phytohaemagglutinin and of a Ca2+ ionophore (A23187) on glycerolipid metabolism in lymphocytes from pig lymph nodes were compared (a) by studying the incorporation of [32P]Pi and [3H]glycerol, and (b) by following the redistribution of [3H]glycerol among the lipids caused by these agents in pulse-chase experiments. 2. Phytohaemagglutinin only stimulated 32P incorporation into phosphatidylinositol and, to a slight extent, phosphatidate. Removal of most of the extracellular Ca2+ somewhat decreased this response. 3. Ionophore A23187 stimulated the labelling of phosphatidate and phosphatidylinositol with 32P to a much greater extent than did phytohaemagglutinin: the increase in phosphatidate labelling, but not that of phosphatidylinositol, was almost abolished by the removal of extracellular Ca2+. 4. The combined effects of phytohaemagglutinin and ionophore appeared to be additive, rather than synergistic. 5. Treatment with ionophore A23187 somewhat decreased the total incorporation of [3H]glycerol into glycerolipids, possibly because it lowered cell ATP content. In these experiments di- and tri-acylglycerol behaved anomalously, triacylglycerol labelling being suppressed completely, whereas that of diacylglycerol was enhanced. The pulse-chase results revealed that triacylglycerol was converted into diacylglycerol in the ionophore-treated cells, and the availability of this diacylglycerol probably led to the enhanced labelling of phosphatidate and phosphatidylinositol in the these cells. 6. Thus an increase in intracellular Ca2+ concentration appeared to have three effects on glycerolipid metabolism: (a) slight inhibition of some metabolic step preceding phosphatidate synthesis, (b) inhibition of diacylglycerol acyltransferase and (c) activation of a triacylglycerol lipase. 7. In contrast, it seems likely that the only effect of phytohaemagglutinin is to stimulate phosphatidylinositol breakdown. 8. Pig polymorphonuclear leucocytes treated with ionophore A23187 showed metabolic changes that were similar to those demonstrated with lymphocytes. 9. A possible similarity is suggested between Ca2+-stimulated triacylglycerol lipase in lymphocytes and polymorphonuclear leucocytes and previous observations of enhanced triacylglycerol metabolism in stimulated cells whose metabolic functions involve membrane fusion.  相似文献   

15.
Summary Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the32Pi-incorporation into phosphoinositides. The extent of32Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate32Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP2, PIP and PI and increased PA labeling. Li+ also inhibited the microwave stimulated PIP2, PIP and PI labeling but had no effect on PA labeling. Calcium ionophore, A23187, inhibited the basal and microwave stimulated32Pi labeling of PIP and PIP2, stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings.  相似文献   

16.
Abnormal myo-[2-3H]inositol incorporation into phosphatidylinositol has been found in phentolamine-treated synaptosomes that were isolated from the cerebral hemispheres of galactose toxic rats and incubated with [33P]Pi and myo-[2-3H] inositol. In galactose toxic rats phentolamine-stimulated myo-[2-3H]inositol labeling of phosphatidylinositol was 70% greater than in normal animals. This enhanced labeling of synaptosomal phosphatidylinositol in galactose toxic rats during stimulation with phentolamine is in marked contrast to the depressed myo-inositol labeling of phosphatidylinositol reported with acetylcholine stimulation.  相似文献   

17.
We describe the effects of lanthanum on protein secretion, potassium efflux, calcium uptake and phosphatidylinositol turnover stimulated by cholinergic agonists in rat parotid glands. Carbachol increases in vitro calcium uptake, protein secretion and K+ efflux through muscarinic receptor; however it fails to stimulate protein discharge or K+ release in a incubation medium free of calcium. Lanthanum inhibits calcium uptake, protein secretion and K+ efflux induced by carbachol without impairing protein discharge stimulated by norepinephrine through the beta-adrenergic receptor. Norepinephrine, in the presence of calcium in the incubation medium, stimulates the K+ efflux through the alpha-adrenergic receptor: this effect is suppressed by lanthanum. These results emphasize the role of increased influx of calcium in the cellular phenomena controlled by muscarinic or alpha-adrenergic receptors. Carbachol increases phosphatidylinositol turnover in the absence of calcium in extracellular medium; indeed it is shown that carbachol increases the rate of phosphatidylinositol breakdown and that lanthanum impairs this cholinergic effects. From these data it is suggested that the interaction between cholinergic agonist and muscarinic receptor could induce a stimulation of 'phosphatidylinositol turnover' which could control the calcium influx according to the gradient through the plasmalemma membrane.  相似文献   

18.
1. The metabolism of phosphatidylinositol and phosphatidate was investigated in fragments of longitudinal smooth muscle from guinea-pig ileum incubated with cholinergic and anticholinergic drugs. 2. Incorporation of Pi into these lipids was enhanced by acetylcholine and carbamoylcholine. 3. The receptor responsible for triggering this response was of the muscarinic type, since (a) the response was also produced by the muscarinic agonists acetyl-beta-methylcholine, carbamoyl-beta-methylcholine and pilocarpine, and (b) the response was prevented by atropine and prophylbenzilylcholine mustard, but not by tubocurarine. 4. Increased phosphatidylinositol labellin was clearly observed within 5 min in tissue treated with a high concentration of carbamoylcholine. 5. Halfmaximal stimulation of phosphatidylinositol labelling occurred at approx. 10 muM-muM-carbamoylcholine. 6. Incubation of muscle fragments with carbamoylcholine provoked a decrease in phosphatidylinositol concentration, as would be expected if phosphatidyl-inositol breakdown is the reaction controlled by agonists. 7. This information all appears consistent with the proposal that phosphatidylinositol breakdown may be a reaction intrinsic to the mechanisms of muscarinic cholinergic receptor systems.  相似文献   

19.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
[3H]Acetylcholine efflux and Na+-K+ ATPase ion pump activity were measured concomitantly in rat cortical synaptosomes. Ouabain (500 microM), strophanthidin (500 microM), and parachloromercuribenzene sulfonate (500 microM) each inhibited ouabain-sensitive 86Rb uptake and elevated [3H]acetylcholine release independently of the external calcium concentration. Veratridine (10 microM), electrical field stimulation (60 V, 60 Hz, 5-ms pulse duration), or the calcium ionophore A23187 (10 micrograms/ml) also inhibited ouabain-sensitive 86Rb uptake and released [3H]acetylcholine, but via a calcium-dependent process. Veratridine-induced [3H]acetylcholine release and ion pump inhibition were correlated over a wide range of drug concentrations and both effects were blocked by pre-treatment with tetrodotoxin (1 microM). The rate of [3H]acetylcholine efflux from superfused synaptosomes was increased within 15 s of exposure to ouabain, strophanthidin, veratridine, A23187, or field stimulation, while ouabain-sensitive 86Rb uptake was significantly decreased within a similar interval. These results suggest that [3H]acetylcholine release is due at least in part to inhibition of Na+-K+ ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号