首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temperature-gradient gel electrophoresis (TGGE) was employed to determine the thermal stabilities of 48 DNA fragments that differ by single base pair mismatches. The approach provides a rapid way for studying how specific base mismatches effect the stability of a long DNA fragment. Homologous 373 bp DNA fragments differing by single base pair substitutions in their first melting domain were employed. Heteroduplexes were formed by melting and reannealing pairs of DNAs, one of which was 32P-labeled on its 5'-end. Product DNAs were separated based on their thermal stability by parallel and perpendicular temperature-gradient gel electrophoresis. The order of stability was determined for all common base pairs and mismatched bases in four different nearest neighbor environments; d(GXT).d(AYC), d(GXG).d(CYC), d(CXA).d(TYG), and d(TXT).d(AYA) with X,Y = A, T, C, or G. DNA fragments containing a single mismatch were destabilized by 1 to 5 degrees C with respect to homologous DNAs with complete Watson-Crick base pairing. Both the bases at the mismatch site and neighboring stacking interactions influence the destabilization caused by a mismatch. G.T, G.G and G.A mismatches were always among the most stable mismatches for all nearest neighbor environments examined. Purine.purine mismatches were generally more stable than pyrimidine.pyrimidine mispairs. Our results are in very good agreement with data where available from solution studies of short DNA oligomers.  相似文献   

2.
Paiva AM  Sheardy RD 《Biochemistry》2004,43(44):14218-14227
Genetic expansion diseases have been linked to the properties of triplet repeat DNA sequences during replication. The most common triplet repeats associated with such diseases are CAG, CCG, CGG, and CTG. It has been suggested that gene expansion occurs as a result of hairpin formation of long stretches of these sequences on the leading daughter strand synthesized during DNA replication [Gellibolian, R., Bacolla, A., and Wells, R. D. (1997) J. Biol. Chem. 272, 16793-7]. To test the biophysical basis for this model, oligonucleotides of general sequence (CNG)(n), where N = A, C, G, or T and n = 4, 5, 10, 15, or 25, were synthesized and characterized by circular dichroism (CD) spectropolarimetry, optical melting studies, and differential scanning calorimetry (DSC). The goal of these studies was to evaluate the influence of sequence context and oligomer length on their secondary structures and stabilities. The results indicate that all single oligomers, even those as short as 12 nucleotides, form stable hairpin structures at 25 degrees C. Such hairpins are characterized by the presence of N:N mismatched base pairs sandwiched between G:C base pairs in the stems and loops of three to four unpaired bases. Thermodynamic analysis of these structures reveals that their stabilities are influenced by both the sequence of the particular oligomer and its length. Specifically, the stability order of CGG > CTG > CAG > CCG was observed. In addition, longer oligomers were found to be more stable than shorter oligomers of the same sequence. However, a stability plateau above 45 nucleotides suggests that the length dependence reaches a maximum value where the stability of the G:C base pairs can no longer compensate the instability of the N:N mismatches in the stems of the hairpins. The results are discussed in terms of the above model proposed for gene expansion.  相似文献   

3.
DNA polymerase (pol) iota has been proposed to be involved in translesion synthesis past minor groove DNA adducts via Hoogsteen base pairing. The N2 position of G, located in minor groove side of duplex DNA, is a major site for DNA modification by various carcinogens. Oligonucleotides with varying adduct size at G N2 were analyzed for bypass ability and fidelity with human pol iota. Pol iota effectively bypassed N2-methyl (Me)G and N2-ethyl(Et)G, partially bypassed N2-isobutyl(Ib)G and N2-benzylG, and was blocked at N2-CH2(2-naphthyl)G (N2-NaphG), N2-CH2(9-anthracenyl)G (N2-AnthG), and N2-CH2(6-benzo[a]pyrenyl)G. Steady-state kinetic analysis showed decreases of kcat/Km for dCTP insertion opposite N2-G adducts according to size, with a maximal decrease opposite N2-AnthG (61-fold). dTTP misinsertion frequency opposite template G was increased 3-11-fold opposite adducts (highest with N2-NaphG), indicating the additive effect of bulk (or possibly hydrophobicity) on T misincorporation. N2-IbG, N2-NaphG, and N2-AnthG also decreased the pre-steady-state kinetic burst rate compared with unmodified G. High kinetic thio effects (S(p)-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) opposite N2-EtG and N2-AnthG (but not G) suggest that the chemistry step is largely interfered with by adducts. Severe inhibition of polymerization opposite N2,N2-diMeG compared with N2-EtG by pol eta but not by pol iota is consistent with Hoogsteen base pairing by pol iota. Thus, polymerization by pol iota is severely inhibited by a bulky group at G N2 despite an advantageous mode of Hoogsteen base pairing; pol iota may play a limited role in translesion synthesis on bulky N2-G adducts in cells.  相似文献   

4.
DNA bending by the bulge defect   总被引:11,自引:0,他引:11  
J A Rice  D M Crothers 《Biochemistry》1989,28(10):4512-4516
Comparative gel electrophoresis measurements were used to characterize DNA bending in molecules containing an extra adenosine on one strand, the so-called bulge defect. We used oligomers containing A6 tracts separated from the bulged base by varying numbers of nucleotides to determine the direction and magnitude of the bulge bend. Helix unwinding by the bulge was determined from the electrophoretic anomaly as a function of the size of the repeated monomers. We conclude that the bulge bend is 21 degrees +/- 3 degrees, primarily in the direction of tilt away from the bulged base. The total helical advance of the DNA at the bulge site is smaller than would be the case if the complementary T were present, corresponding to an unwinding by 25 degrees +/- 6 degrees. These values are in good agreement with the results of NMR and energy minimization studies of the bulged base in double-helical deoxyoligonucleotides [Woodson, S. A., & Crothers, D.M. (1988) Biochemistry 27, 3130-3141]  相似文献   

5.
DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.  相似文献   

6.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

7.
We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn). Similar experiments were also performed with N=bis-amino-U (BAU) (for stable recognition of AT base pairs) and N=S (for recognition of TA inversions). We find that the introduction of a duplex mismatch destabilises the C+.GZ, T.AZ and G.TZ triplets. A similar effect is seen with BAU.AZ triplets. In contrast, other base combinations, based on non-standard triplets such as C.AZ, T.TZ, G.CZ and A.CZ are stabilised by the presence of a duplex mismatch. In each case S binds to sites containing duplex mismatches better than the corresponding Watson-Crick base pairs.  相似文献   

8.
The sequence, temperature, concentration, and solvent dependence of singlet energy transfer from normal DNA bases to the 2-aminopurine base in synthesized DNA oligomers were investigated by optical spectroscopy. Transfer was shown directly by a variable fluorescence excitation band at 260-280 nm. Adenine (A) is the most efficient energy donor by an order of magnitude. Stacks of A adjacent to 2AP act as an antenna for 2AP excitation. An interposed G, C, or T base between A and 2AP effectively blocks transfer from A to 2AP. Base stacking facilitates transfer, while base pairing reduces energy transfer slightly. The efficiency is differentially temperature dependent in single- and double-stranded oligomers and is highest below 0 degrees C in samples measured. An efficiency transition occurs well below the melting transition of a double-stranded decamer. The transfer efficiency in the duplex decamer d(CTGA[2AP]TTCAG)(2) is moderately dependent on the sample and salt concentration and is solvent dependent. Transfer at physiological temperature over more than a few bases is improbable, except along consecutive A's, indicating that singlet energy transfer is not a major factor in the localization of UV damage in DNA. These results have features in common with recently observed electron transfer from 2AP to G in oligonucleotides.  相似文献   

9.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

10.
We have synthesized nine self-complementary DNA oligomers containing different flanking sequences adjacent to a pair of contiguous GA mismatches, and have used high resolution nuclear magnetic resonance (n.m.r.) to investigate the GpA phosphodiester backbone conformation and mismatch pairing schemes in these duplexes. We found dramatic effects of the flanking base pair on the hydrogen bonding and backbone conformation, which appear to be coupled. Thus the Ganti-Aanti base pairing scheme in a NAGATN sequence switches to a more stable sheared GA base pairing scheme in a NCGAGN or NTGAAN context, while no duplex is formed (or only GA bulges occur) when NAGATN is changed to NGGACN. Furthermore, the more stable sheared GA pairing in NPyGAPuN sequences is associated with a BII rather than BI backbone conformation for the phosphodiester between the adjacent mismatched GA pairs. The overall stability of these adjacent GA mismatches as measured by imino proton n.m.r. studies is Py-GA-Pu > A-GA-T > G-GA-C.  相似文献   

11.
We have refined a series of isomorphous crystal structures of the Escherichia coli DNA mismatch repair enzyme MutS in complex with G:T, A:A, C:A and G:G mismatches and also with a single unpaired thymidine. In all these structures, the DNA is kinked by ~60° upon protein binding. Two residues widely conserved in the MutS family are involved in mismatch recognition. The phenylalanine, Phe 36, is seen stacking on one of the mismatched bases. The same base is also seen forming a hydrogen bond to the glutamate Glu 38. This hydrogen bond involves the N7 if the base stacking on Phe 36 is a purine and the N3 if it is a pyrimidine (thymine). Thus, MutS uses a common binding mode to recognize a wide range of mismatches.  相似文献   

12.
Complete libraries of oligonucleotides were used as substrates for Thermus thermophilus DNA ligase, on a M13mp18 ssDNA template. A 17mer primer was used to start a polymerisation process. Ladders of ligation products were analysed by gel electrophoresis. Octa-, nona- and decanucleotide libraries were compared. Nonanucleotides were optimum for polymerisation and up to 15 monomers were ligated. The fidelity of incorporation was studied by sequencing 28 clones (2268 bases) of nonanucleotide polymers, 12 monomers in length. Of the ligated monomers, 79% were the correct complementary sequence. In a total of 57 (2.5%) mispaired bases, there was a strong bias to G.T, G.A, G.G and A.G mismatches. Of the mismatches, 86% were found to be purines on the incoming oligonucleotide, of which 71% were G. There is evidence for clustering of mismatches within specific 9mers and at specific positions within these 9mers. The most frequent mismatches were at the 5'-terminus of the oligonucleotide, followed by the central position. We suggest that sequence selection was imposed by the ligase and not just by base pairing interactions. The ligase directs polymerisation in the 3' to 5' direction which we propose is linked to its role in lagging strand DNA replication.  相似文献   

13.
Hwang GS  Jones GB  Goldberg IH 《Biochemistry》2003,42(28):8472-8483
The solution structure of the complex formed between an oligonucleotide containing a two-base bulge (5'-CACGCAGTTCGGAC.5'-GTCCGATGCGTG) and DDI, a designed synthetic agent, has been elucidated using high-resolution NMR spectroscopy and restrained molecular dynamic simulation. DDI, which has been found to modulate DNA strand slippage synthesis by DNA polymerase I [Kappen, L. S., Xi, Z., Jones, G. B., and Goldberg, I. H. (2003) Biochemistry 42, 2166-2173], is a wedge-shaped spirocyclic molecule whose aglycone structure closely resembles that of the natural product, NCSi-gb, which strongly binds to an oligonucleotide containing a two-base bulge. Changes in chemical shifts of the DNA upon complex formation and intermolecular NOEs between DDI and the bulged DNA duplex indicate that agent specifically binds to the bulge site of DNA. The benzindanone moiety of DDI intercalates via the minor groove into the G7-T8-T9.A20 pocket, which consists of a helical base pair and two unpaired bulge bases, stacking with the G7 and A20 bases. On the other hand, the dihydronaphthalenone and aminoglycoside moieties are positioned in the minor groove. The aminoglycoside, which is attached to spirocyclic ring, aligns along the A20T21G22 sequence of the nonbulged strand, while the dihydronaphthalenone, which is restrained by the spirocyclic structure, is positioned near the G7-T8-T9 bulge site. The aminoglycoside is closely aligned with the dihydronaphthalenone, preventing its intercalation into the bulge site. In the complex, the unpaired purine (G7) is intrahelical and stacks with the intercalating moiety of DDI, whereas the unpaired pyrimidine (T8) is extrahelical. The structure of the complex formed by binding of the synthetic agent to the two-base bulged DNA reveals a binding mode that differs in important details from that of the natural product, explaining the different binding specificity for the bulge sites of DNA. The structure of the DDI-bulged DNA complex provides insight into the structure-binding affinity relationship, providing a rational basis for the design of specific, high-affinity probes of the role of bulged nucleic acid structures in various biological processes.  相似文献   

14.
Previous experiments have established that in certain synthetic oligomeric DNA sequences, including mixtures of d(AACC)5 with d(CCTT)5, adenine-thymine (A.T) base pairs form to the exclusion of neighboring protonated cytosine-cytosine (C.C+) base pairs [Edwards, E., Ratliff, R., & Gray, D. (1988) Biochemistry 27, 5166-5174]. In the present work, circular dichroism and other measurements were used to study DNA oligomers that represented two additional classes with respect to the formation of A.T and/or C.C+ base pairs. (1) One class included two sets of repeating pentameric DNA sequences, d(CCAAT)3-6 and d(AATCC)4,5. For both of these sets of oligomers, an increase in the magnitude of the long-wavelength positive CD band centered at about 280 nm occurred as the pH was lowered from 7 to 5 at 0.1 and 0.5 M Na+, indicating that C.C+ base pairs formed. Even though it may have been possible for these oligomers to form duplexes with two antiparallel A.T base pairs per pentamer, no A.T base pairing was detected by monitoring the CD changes at 250 nm. Thus, spectral data showed that as few as 40% C.C+ base pairs were stable in two sets of oligomers in which A.T base pairs did not form adjacent to, or in place of, C.C+ base pairs. (2) Another class of oligomer was represented by d(C4A4T4C4), which was studied by CD, HPLC, and centrifugation experiments. We confirmed previous work that this sequence was able to form both types of base pairs as the pH and temperature were lowered [Gray, D., Cui, T., & Ratliff, R. (1984) Nucleic Acids Res. 12, 7565-7580].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Heptadecaoligodeoxyribonucleotides containing one or more of the bases, 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one (P), 2-amino-6-methoxyaminopurine (K), and hypoxanthine (I) and combinations of P with K and I have been synthesised on a DNA synthesiser. The stability of duplexes containing these basemodified oligomers with P/A, P/G, K/C and K/T; P/A, P/G, I/C, I/T and I/A, I/G, I/C, I/T base pairs were compared by measuring their melting transition (Tm) values. Oligomers containing both P and K and P and I were more stable than those with I alone or with mismatches. These oligomers together with one with a P base at the 3'-end were used as primers in polymerase chain reaction (PCR) experiments. They were all effective primers except one with I alone and a triple mismatch. Thus the use of the degenerate bases P and K in primer design is established.  相似文献   

16.
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.  相似文献   

17.
Kornyushyna O  Burrows CJ 《Biochemistry》2003,42(44):13008-13018
Oxidative damage to DNA by endogenous and exogenous reactive oxygen species has been directly linked to cancer, aging, and a variety of neurological disorders. The potential mutagenicity of the primary guanine oxidation product 8-oxo-7,8-dihydroguanine (Og) has been studied intensively, and much information is available about its miscoding potential in vitro and in vivo. Recently, a variety of DNA lesions have been identified as oxidation products of both guanine and 8-oxoguanine, among them spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). To address questions concerning the mutagenic potential of these secondary products of guanine oxidation, the effect of the lesions on proofreading by DNA polymerase was studied in vitro using the Klenow fragment of Escherichia coli polymerase I (Kf exo+). For the first time, k(cat)/K(m) values were obtained for proofreading of the X:N mismatches (X = Og, Gh, or Sp; N = A, G, or C). Proofreading studies of the terminal mismatches demonstrated the significance of the sequence context flanking the lesion on the 3' side. In addition, a sequence dependence was observed for Gh based on the identity of the base on the 5' side of the lesion providing evidence for a primer slippage mode if N was complementary to the 5' base. Internal mismatches were recognized by Kf exo+ resulting in the excision of the correct base pairs flanking mismatches from the 5' side. The absence of a sequence effect for the Gh- and Sp-containing duplexes can be attributed to the severe destabilization of the lesion-containing duplexes that promotes interaction with the exonuclease domain of the Klenow fragment.  相似文献   

18.
The synthesis of a diaminopurine PNA monomer, N-[N6-(benzyloxycarbonyl)-2,6-diaminopurine-9-yl] acetyl-N-(2-t-butyloxycarbonylaminoethyl)glycine, and the incorporation of this monomer into PNA oligomers are described. Substitution of adenine by diaminopurine in PNA oligomers increased the T m of duplexes formed with complementary DNA, RNA or PNA by 2.5-6.5 degrees C per diaminopurine. Furthermore, discrimination against mismatches facing the diaminopurine in the hybridizing oligomer is improved. Finally, a homopurine decamer PNA containing six diaminopurines is shown to form a (gel shift) stable strand displacement complex with a target in a 246 bp double-stranded DNA fragment.  相似文献   

19.
Accuracy of DNA polymerase-alpha in copying natural DNA   总被引:11,自引:1,他引:10       下载免费PDF全文
The fidelity of DNA polymerase-alpha from calf thymus (9S enzyme) in copying bacteriophage phi174am16 DNA in vitro has been determined from the frequency of production of different revertants. In the self-priming reaction we were able to measure the frequencies of base pairing mismatches during the course of replication on biasing the ratios of deoxynucleoside triphosphates. The frequency of dGTP:T, dGTP:G and dATP:G mismatches were 7.6 x 10(-5), 4.4 x 10(-5) and 2.8 x 10(-5), respectively, at equal concentrations of the deoxynucleoside triphosphates. dCTP:A, dGTP:A, dCTP:T and dTTP:T mismatches were below the limit of detection (<5 x 10(-6)). A synthetic dodecamer primer with a 3' end covering the first two bases of the amber codon was used to determine the misinsertion frequency of the first nucleotide incorporated. This gave a misinsertion frequency of 1.5 x 10(-4) for the dGTP:T mismatch, which is slightly higher than that observed from the pool bias studies. Further, it showed no sensitivity to biasing the nucleotide pool, suggesting a different mechanism for the incorporation of the first nucleotide. These data do not support 'energy-relay'-like models for achieving high accuracy in eukaryotes. The observed misinsertion frequencies were corrected for mismatch repair of the heteroduplexes during the transfection experiments by parallel experiments using a mismatched primer. This was synthesized to have the same G:T mismatch as produced in the preceding experiment.  相似文献   

20.
Negishi K  Loakes D  Schaaper RM 《Genetics》2002,161(4):1363-1371
Deoxyribosyl-dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is a potent mutagenic deoxycytidine-derived base analogue capable of pairing with both A and G, thereby causing G. C --> A. T and A. T --> G. C transition mutations. We have found that the Escherichia coli DNA mismatch-repair system can protect cells against this mutagenic action. At a low dose, dP is much more mutagenic in mismatch-repair-defective mutH, mutL, and mutS strains than in a wild-type strain. At higher doses, the difference between the wild-type and the mutator strains becomes small, indicative of saturation of mismatch repair. Introduction of a plasmid containing the E. coli mutL(+) gene significantly reduces dP-induced mutagenesis. Together, the results indicate that the mismatch-repair system can remove dP-induced replication errors, but that its capacity to remove dP-containing mismatches can readily be saturated. When cells are cultured at high dP concentration, mutant frequencies reach exceptionally high levels and viable cell counts are reduced. The observations are consistent with a hypothesis in which dP-induced cell killing and growth impairment result from excess mutations (error catastrophe), as previously observed spontaneously in proofreading-deficient mutD (dnaQ) strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号