首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Regulation and over-expression of the fnr gene of Escherichia coli   总被引:33,自引:0,他引:33  
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
以丁酸梭菌(Clostridium butyricum)基因组DNA为模板,利用PCR技术扩增得到1,3-丙二醇氧化还原酶基因dhaT,将它连接到pMD18一T载体上,得到重组质粒pMD—dhaT,对此重组质粒进行序列测定,对其DNA序列分析表明,dhaT基因全长为1 158bp。将dhaT基因插入表达载体pSE-380中,构建成重组子pSE—dhaT,并在大肠杆菌JMl09中进行诱导表达。研究表明,以1,3-丙二醇为底物时,基因工程菌在37℃下,以1.0mmol/L IPTG诱导14h,酶活力达到16.28U/mL,比原始菌株提高5、6倍。  相似文献   

13.
14.
15.
16.
Regulation of the cysB gene expression in Escherichia coli   总被引:2,自引:0,他引:2  
  相似文献   

17.
《Gene》1996,171(1):59-63
A chromosomal DNA fragment containing the Bacillus macquariensis (Bm) ATP-dependent phosphofructokinase-encoding gene (pfk) was cloned from a subgenomic library in pUC19 using a PCR-derived probe. The region containing pfk, including flanking sequences, was sequenced and the deduced amino acid sequence (aa) was found to be homologous to other PFK, but it contained two single-aa changes conserved in a range of other organisms from pro- and eukaryotic origins. Enzymatic studies with PFK purified from overproducing Escherichia coli (Ec) host cells showed that the Bm enzyme is similar to B. stearothermophilus (Bs) PFK in many respects and that it is relatively cold stable.  相似文献   

18.
19.
目的 构建大肠埃希菌BL21 Mn-SOD-RFP报告基因载体,并探讨温度对大肠埃希菌Mn-SOD基因启动子的调控.方法 利用重组PCR技术,构建以Mn-SOD启动子调控的红色荧光蛋白(RFP)报告基因载体,将融合基因与T载体连接导入大肠埃希菌中,在不同温度(20、37、40和45℃)培养不同时间(13、20、30、37、44和54 h)后,利用荧光显微镜和荧光光度计观察大肠埃希菌表达RFP的情况.结果 正确构建Mn-SOD-RFP融合基因,重组PCR结果与测序结果完全一致;不同温度不同时间诱导后,Mn-SOD启动子在37℃,培养30~ 37 h表达的红色荧光蛋白最多.结论 成功构建该报告基因载体,并完成温度、时间对其调控的优化,为更进一步研究其他因素对SOD基因启动子的调控机制奠定基础.  相似文献   

20.
Role of NAD in regulating the adhE gene of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fermentative alcohol dehydrogenase of Escherichia coli is encoded by the adhE gene, which is induced under anaerobic conditions but repressed in air. Previous work suggested that induction of adhE might depend on NADH levels. We therefore directly measured the NAD+ and NADH levels for cultures growing aerobically and anaerobically on a series of carbon sources whose metabolism generates different relative amounts of NADH. Expression of adhE was monitored both by assay of alcohol dehydrogenase activity and by expression of phi(adhE'-lacZ) gene fusions. The expression of the adhE gene correlated with the ratio of NADH to NAD+. The role of NADH in eliciting adhE induction was supported by a variety of treatments known to change the ratio of NADH to NAD+ or alter the total NAD+-plus-NADH pool. Blocking the electron transport chain, either by mutation or by chemical inhibitors, resulted in the artificial induction of the adhE gene under aerobic conditions. Conversely, limiting NAD synthesis, by introducing mutational blocks into the biosynthetic pathway for nicotinic acid, decreased the expression of adhE under anaerobic conditions. This, in turn, was reversed by supplementation with exogenous NAD or nicotinic acid. In merodiploid strains carrying deletion or insertion mutations abolishing the synthesis of AdhE protein, an adhE-lacZ fusion was expressed at nearly 10-fold the level observed in an adhE+ background. Introduction of mutant adhE alleles producing high levels of inactive AdhE protein gave results equivalent to those seen in absence of the AdhE protein. This finding implies that it is the buildup of NADH due to lack of enzyme activity, rather than the absence of the AdhE protein per se, which causes increased induction of the phi(adhE'-lacZ) fusion. Moreover, mutations giving elevated levels of active AdhE protein decreased the induction of the phi(adhE'-lacZ) fusion. This finding suggests that the enzymatic activity of the AdhE protein modulates the level of NADH under anaerobic conditions, thus indirectly regulating its own expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号