首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ocular circadian rhythm in the eye of Bulla gouldiana is generated by a rhythm in membrane potential of retinal neurons that is driven by alterations in potassium conductance. Since potassium conductance may be modulated by the phosphorylation of potassium channels, the circadian rhythm may reflect rhythmic changes in protein kinase activity. Furthermore, the circadian rhythm recorded from the Bulla eye can be phase shifted by agents that affect protein synthesis and protein phosphorylation on tyrosine residues. Interestingly, the eukaryotic cell division residues. Interestingly, the eukaryotic cell division cycle is generated by similar processes. Rhythmic cell division is regulated by periodic synthesis and degradation of a protein, cyclin, and periodic tyrosine phosphorylation of a cyclin-dependent kinase (cdk), p34cdc2. The interaction between these two proteins results in rhythmic kinase activity of p34cdc2. Both cyclin and p34cdc2 are pat of two diverse gene families, some of whose members have been localized to postmitotic cell types with no function yet determined. In the current work, we identify proteins similar to the cdks and cyclin in the eye of Bulla. Neither of these ocular proteins are found in mitotic cells in Bulla, and the cdk-like protein (p40) is specific to the eye. Furthermore, the concentration of the cyclin-like protein (p66) is affected by treatments that phase shift the circadain rhythm. The identification of cdk and cyclin-like proteins in the Bulla eye is consistent with the hypothesis that the biochemical mechanism responsible for generating the ocular circadian rhythm in Bulla is related to the biochemical mechnism that regulates the eukaryotic cell division cycle. 1994 John Wiley & Sons, Inc.  相似文献   

2.
The ocular circadian rhythm of compound action potential frequency in Bulla gouldiana is driven by rhythmic changes in the membrane potential of putative circadian pacemaker cells. Changes in the membrane potential of these neurons is required for light-induced phase shifts of the rhythm. We have tested the proposition that these changes in membrane potential reflect underlying changes in ionic conductances. We have found that: 1. Membrane conductance in the dark is highest during the subjective night when the cells are hyperpolarized, decreases as the cells depolarize spontaneously near projected dawn and is lowest during the subjective day. The changes in membrane potential and conductance follow a similar time course. 2. Long pulses of light delivered to eyes during their subjective night produce a characteristic response: There is initially a large, phasic depolarization accompanied by a burst of CAPs; this is followed by a repolarizing phase during which CAP activity is reduced to zero; and finally a tonic depolarization develops that is accompanied by a resumption of CAP activity at a steady rate. 3. During the subjective night, the tonic depolarization is accompanied by a decrease in conductance compared to the previous dark value. However, light pulses of similar duration delivered to eyes during their subjective day causes tonic depolarizations and increased CAP activity, but no measurable change in conductance. 4. Membrane responses to light are sensitive to agents that reduce Ca2+ flux. Light pulses during the subjective night produce a phasic depolarization, but the repolarization phase is eliminated in low Ca2+/EGTA seawater and is reduced in 5 mM Ni2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We examined, in vitro, the effects of changing the free-running period (tau) of one oscillator on the phase relationship between the circadian rhythms of impulse activity in the optic nerves that are driven by the bilaterally paired ocular pacemakers in Bulla gouldiana. One eye of the coupled pair was treated either with lithium artificial seawater (to lengthen tau) or with low-chloride artificial seawater (to shorten tau). The results suggested that the coupling is relatively weak, since the majority (9 to 16) of eyes were unable to maintain a stable phase relationship when tau differences between the eyes were only about 1 hr. When stable phase differences were achieved, the tau of the coupled system was intermediate between the tau's of the individual oscillators, and the eye with the shorter intrinsic tau would invariably phase-lead the pair. Interestingly, in a few instances, pairs of eyes that had desynchronized by 9.5-10.5 hr resynchronized within a single cycle via a massive phase advance in the rhythm from the phase-lagging eye. The result suggests the existence of a novel phase-shifting mechanism that is part of the mutual coupling pathway. We found evidence that connection of the eye with the cerebral ganglion increases the tau of the ocular pacemaker, suggesting that efferent signals from the central nervous system influence tau. These signals may also modulate the phase-shifting response.  相似文献   

4.
Summary Retinoic acid (RA), a naturally occurring metabolite of vitamin A, increased the number of receptors for nerve growth factor (NGF) in cultured human neuroblastoma cells (LA-N-1), as indicated by an immunofluorescence assay of cell surface receptors and by specific binding of 125I-NGF to solubilized receptors. Analysis of 125I-NGF binding showed that RA increased the number of both high affinity and low affinity receptors for NGF without affecting the equilibrium dissociation constants. Neurite outgrowth similar to that produced by NGF occurred following RA-treatment in LA-N-1 cells, in the SY5Y subclone of SK-N-SH human neuroblastoma cells and in explanted chick dorsal root ganglia (DRG). Whether morphological changes following RA treatment are directly related to the increase in NGF receptors is unknown. Data presented here are consistent with literature reports that RA modifies cell surface glycoproteins, including those that act as cell surface receptors for epidermal growth factor and insulin.Abbreviations DRG dorsal root ganglia - NGF nerve growth factor - RA retinoic acid  相似文献   

5.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   

6.
7.
8.
The molecular mechanisms of the pacemakers underlying circadian rhythms are not well understood. One molecule that presumably functions in the circadian clock of Drosophila is the product of the period (per) gene, which dramatically affects biological rhythms when mutated. An antibody specific for the per protein labels putative circadian pacemaker neurons and fibers in eyes of two marine gastropods, Aplysia and Bulla. As was found for the Drosophila per protein, there is a daily rhythm in the levels of the per-like antigen in Aplysia eyes. Thus, certain molecular features of the per protein, as well as aspects of the temporal regulation of its expression, may be conserved in circadian pacemakers of widely divergent species.  相似文献   

9.
Proteins can refold from thermal-induced denaturation. Apo-diketoreductase exhibited a unique refolding profile, in which the degree of refolding from higher temperature was more complete. Partial aggregation and structural change may provide possible explanation on this phenomenon.  相似文献   

10.
11.
12.
13.
5-Aminolevulinic acid synthase 1 (ALAS1) is the first and rate-controlling enzyme of heme biosynthesis. This study was to determine the effects of heme and selected nonheme metalloporphyrins on human ALAS1 gene expression in hepatocytes. We found that, upon heme and cobalt protoporphyrin (CoPP) treatments, ALAS1 mRNA levels were down-regulated significantly by ca. 50% or more. Measurement of mRNA in the presence of actinomycin D showed that these down-regulations were due to the decreases in mRNA half-lives. Furthermore, the levels of mitochondrial mature ALAS1 protein were down-regulated by 60-70%, but those of the cytosolic precursor protein were up-regulated by 2-5-fold. Measurement of protein in the presence of cycloheximide (CHX) suggests that elevation of the precursor form is due to the increase in protein half-lives. These results provide novel insights into the mechanisms of heme repressional effects on ALAS1 and provide a rationale for further investigation of CoPP as a therapeutic agent for acute porphyric syndromes.  相似文献   

14.
15.
16.
17.
The yeast vacuole is functionally and structurally equivalent to the mammalian lysosome. Delivery of resident and cargo proteins to the lysosome is vital for proper cellular operations, and failure to correctly target proteins to the organelle is correlated with the development of neurodegenerative and lysosomal storage diseases. We previously reported a novel mutant screen for vacuolar trafficking defects in yeast Saccharomyces cerevisiae that resulted in the isolation of env1, an allelic mutant of VPS35. As a member of the retromer complex, Vps35p binds directly to cargos and facilitates their retrograde transport to trans Golgi from endosomes. Our previous studies established that env1 exhibits unique pleiotropic phenotype in comparison to other tested VPS35 alleles including severe growth sensitivity to hygromycin B and internal accumulation of the precursor form of the vacuolar enzyme carboxypeptidase Y. Here, through a combination of sub-cellular fractionation and indirect immunofluorescence microscopy, we confirm and extend the unique phenotype of env1 to processing and localization of additional proteins within the vacuolar trafficking pathway. In comparative studies with a null and an allelic mutant of VPS35, env1 exhibited unique processing defects of retromer-independent vacuolar membrane enzyme alkaline phosphatase at the vacuole and significant Golgi localization of retromer cargos Vps10p and Kex2p despite compromised trafficking at the Golgi and late endosome interface.  相似文献   

18.
D G Macejak  P Sarnow 《Enzyme》1990,44(1-4):310-319
Translation of the mRNA encoding the immunoglobulin heavy-chain binding protein (BiP) is enhanced in poliovirus-infected cells at a time when translation of host cell mRNAs is inhibited. To test whether the mRNA of BiP is translated by internal ribosome binding, like picornaviral RNAs, we constructed plasmids for the expression of dicistronic hybrid RNAs containing the 5' noncoding region (5'NCR) of BiP as an intercistronic spacer element between two cistrons. Expression of these dicistronic mRNAs in mammalian cells resulted in efficient translation of both cistrons, demonstrating that the 5'NCR of BiP can confer internal ribosome binding to a heterologous RNA. This result suggests that the mRNA encoding BiP is bifunctional and can be translated by an internal ribosome-binding mechanism, in addition to the conventional cap-dependent scanning mechanism. This is the first demonstration of a cellular mRNA that can be translated by internal ribosome binding, and implies that this may be a mechanism for cellular translational regulation.  相似文献   

19.
The aim of this study was to determine the effects of leptin treatment on prepro-orexin and orexin receptor expression in the rat hypothalamus. Adult male rats, food-deprived for 48 and 72 h, were treated one time with vehicle or leptin (10 microg, icv). Prepro-orexin mRNA content was measured by semiquantitative RT-PCR, Northern blot, and in situ hybridization; orexin receptor 1 and 2 mRNA content was quantified by Northern blot and/or semiquantitative RT-PCR. Our results indicate that leptin inhibits a fasting-induced increase in prepro-orexin mRNA and orexin receptor 1 mRNA levels in the rat hypothalamus, while orexin receptor 2 mRNA levels were unchanged in all situations evaluated. These data provide direct evidence for an additional mechanism of adaptation of the hypothalamus to food deprivation and for a new effect of leptin in the regulation of food intake.  相似文献   

20.
The rapid advance of genome sequencing projects challenges biologists to assign physiological roles to thousands of unknown gene products. We suggest here that regulatory functions and protein-protein interactions involving specific products may be inferred from the trajectories over time of their mRNA and free protein levels within the cell. The level of a protein in the cytoplasm is governed not only by the level of its mRNA and the rate of translation, but also by the protein's folding efficiency, its biochemical modification, its complexation with other components, its degradation, and its transport from the cytoplasmic space. All these co- and post translational events cause the concentration of the protein to deviate from the level that would result if we only accounted for translation of its mRNA. The dynamics of such deviations can create patterns that reflect regulatory functions. Moreover, correlations among deviations highlight protein pairs involved in potential protein-protein interactions. We explore and illustrate these ideas here using a genetically structured simulation for the intracellular growth of bacteriophage T7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号