共查询到20条相似文献,搜索用时 15 毫秒
1.
The ParB family partitioning protein, KorB, of plasmid RK2 is central to a regulatory network coordinating replication, maintenance and transfer genes. Previous immunofluorescence microscopy indicated that the majority of KorB is localized in plasmid foci. The 12 identified KorB binding sites on RK2 are differentiated by: position relative to promoters; binding strength; and cooperativity with other repressors and so the distribution of KorB may be sequestered around a sub-set of sites. However, chromatin immunoprecipitation analysis showed that while RK2 DNA molecules appear to sequester KorB to create a higher local concentration, cooperativity between DNA binding proteins does not result in major differences in binding site occupancy. Thus under steady state conditions all operators are close to fully occupied and this correlates with gene expression on the plasmid being highly repressed. 相似文献
2.
3.
4.
5.
6.
7.
The KorA repressor proteins of IncP-1 plasmids belong to a growing family of plasmid-encoded repressors that regulate partitioning genes, and in the IncP-1 plasmids coordinate these with expression of replication and transfer genes as well. Both KorA(RK2) (IncP-1 alpha) and KorA(R751) (IncP-1 beta) recognise the 5'-GTTTAGCTAAAC-3' palindrome. Reporter gene assays showed that KorA proteins from these two main subgroups of IncP-1 plasmids show specificity for their own promoter/operators and this preference was confirmed with in vitro binding studies using gel mobility shift assays on one representative promoter. Class I (high affinity) operators for KorA(RK2) are flanked by an A-A-A/T sequence in the upstream half; the T base was shown to greatly influence strong repression. A C-A-G triplet was present in the same region in the R751 O(A) sequences and the G base was accordingly found to be important for strong KorA(R751) repression. An obvious difference between the two KorA proteins is a histidine to serine change at the C-proximal end of the putative recognition helix of the HTH motif (aa 56). An IncP-1 alpha KorAH56S mutant protein had higher affinity for all operators but had improved more on R751 operators than on RK2 operators. This indicates that KorA of RK2 is not maximised for DNA binding activity and that the aa difference at position 56 may play a role in differentiation between alpha and beta KorA operators. 相似文献
8.
KorA and KorB proteins of IncP1 plasmid RK2 are encoded in the central control region (ccr) of the plasmid and act as global regulators of plasmid genes for replication, transfer and stable inheritance. KorA represses seven promoters on RK2, by binding to a defined operator site, OA, which always occurs in promoter regions. KorB recognises another operator, OB, which is found 12 times on the RK2 genome, but not always in promoter regions. At five of the KorA-regulated promoters, an OBsequence is also present. The presence of both KorA and KorB leads to severely decreased promoter activity. By measuring repression at different levels of KorA and KorB alone and in combination, we showed that there is at least 3. 4-fold co-operativity between them at korApin vivo. Testing the ability of previously isolated KorA mutants to act in a co-operative way in the presence of KorB in vivo or in vitro showed that the C-terminal part of KorA between amino acid positions 68 and 83 is required for this co-operativity. This region is part of a segment that is highly conserved between KorA and two other RK2 proteins, TrbA and KlcB. We propose that this conserved region may provide the basis for co-operativity with KorB either indirectly, by modulating DNA structure near the KorB binding site, or directly by serving as the "recognition" patch of each protein by KorB. It may thus serve as a key domain in allowing a sensitive response of the global circuits to changes in repressor concentration and thus modulation of replication, transfer and maintenance. 相似文献
9.
IncC and KorB proteins of broad-host-range plasmid RK2 are members of the ParA-ParB families of proteins needed for stable partitioning of bacterial chromosomes and plasmids. KorB also functions as a global regulator of expression of RK2 genes. It recognises and binds to a palindromic operator, O(B), found 12 times on RK2 DNA (O(B)1-O(B)12). We performed detailed studies on the binding of KorB to the 12 operators and showed that they fall into three groups (A, B, C) based on the binding strength of KorB. The highest affinity site is O(B)10, which occurs in the promoter transcribing genes for replication, trfAp. Purified IncC1 potentiated KorB binding to all O(B) sites except O(B)3, a site involved in partitioning. Using O(B)10 as a test system, we showed that IncC1 increases the stability of the KorB-DNA complex. The 5 bp sequences flanking the 13mer O(B) site were found to affect KorB binding and IncC1 potentiation activity. Study of hybrid operators indicated that flanking sequences on one side only were sufficient to specify the difference between O(B)10 and O(B)3. Replacement of adenine by guanine at positions -8 and -10 from the O(B)10 centre of symmetry was needed to convert it from the highest-affinity group (A) to the medium-affinity group (B) on the basis of KorB binding. These changes also eliminated potentiation by IncC1. The -8 and -10 positions from the centre of O(B)3 symmetry are occupied by guanines and this may provide part of the specificity of IncC1 behaviour on KorB binding. Studies on a series of synthetic operators suggested that KorB contacts O(B) flanking sequences, and that IncC1 may alter the conformation of multimeric KorB so that it is better able to make these contacts, thus stabilising the complexes once formed. 相似文献
10.
11.
A network of circuits, with KorB and TrbA as key regulators, controls genes for conjugative transfer of broad host range plasmid RK2. To assess the importance of the TrbA regulon, mutational analysis was applied to the TrbA operator at the trbB promoter and then to other TrbA-regulated promoters in the tra region. All identified TrbA operators are submaximal; in the case of trbBp, a G to A transition that made the operator core a perfect palindrome increased repression by about 50% compared to the wild type. When this change was introduced into the RK2 genome, decreases in transfer frequency of up to three orders of magnitude were observed, with bigger effects when Escherichia coli was the donor compared to Pseudomonas putida. Western blotting showed a significant decrease in Trb protein levels. These effects were much greater than the effect of the mutation on repression by TrbA alone. When KorB was introduced into the reporter system, the effects were closer to those observed in the whole RK2 context. These results indicate that co-operativity, previously observed between TrbA and KorB, allows big changes in transfer gene expression to result from small changes in individual regulator activities. 相似文献
12.
The mechanisms by which bacterial plasmids and chromosomes are partitioned are largely obscure, but it has long been assumed that the molecules to be separated are initially paired, as are sister chromatids in mitosis. We offer in vivo evidence that the partition protein ParB encoded by the bacterial plasmid P1 can pair cis-acting partition sites of P1 inserted in a small, multicopy plasmid. ParB was shown previously to be capable of extensive spreading along DNA flanking the partition sites. Experiments in which ParB spreading was constrained by physical roadblocks suggest that extensive spreading is not required for the pairing process. 相似文献
13.
The KorB protein of the broad-host-range plasmid RP4 acts as a multifunctional regulator of plasmid housekeeping genes, including those responsible for replication, maintenance and conjugation. Additionally, KorB functions as the ParB analog of the plasmid's partitioning system. The protein structure consists of eight helices, two of which belong to a predicted helix-turn-helix motif. Each half-site of the palindromic operator DNA binds one copy of the protein in the major groove. As confirmed by mutagenesis, recognition specificity is based mainly on two side chain interactions outside the helix-turn-helix motif with two bases next to the central base pair of the 13-base pair operator sequence. The surface of the KorB DNA-binding domain mirrors the overall acidity of KorB, whereas DNA binding occurs via a basic interaction surface. We present a model of KorB, including the structure of its dimerization domain, and discuss its interactions with the highly basic ParA homolog IncC. 相似文献
14.
The broad-host-range plasmid RK2 has been a model for studying DNA metabolism in bacteria for many years. It is used as a vector allowing genetic manipulations in numerous bacterial species. The RK2 genome encodes several genes providing the plasmid with diverse functions allowing for its stable maintenance in a variety of bacterial hosts. This review will focus on two processes indispensable for plasmid DNA maintenance. We will summarize recent understanding of the molecular mechanisms contributing to the RK2 DNA replication and partitioning. 相似文献
15.
Unidirectional replication of the P-group plasmid RK2. 总被引:19,自引:0,他引:19
The mode of replication of the broad host-range plasmid RK2 has been determined from examination of molecular replicative forms cleaved with the restriction endonucleases EcoRI and Hind III. Replication is unidirectional, and proceeds from a unique origin. The location of the origin and other evidence suggests that genes involved in plasmid maintenance are not tightly clustered. 相似文献
16.
We have identified regions encoding conjugal transfer, plasmid maintenance, and trimethoprim resistance on the IncP-1 plasmid R751 by complementation tests with cloned deoxyribonucleic acid fragments and self-replicating derivatives constructed in vitro. The genes for replication and transfer show a scattered organization similar to that previously determined for RK2, another IncP-1 plasmid. Derivatives of RK2 are able to complement R751 derivatives defective in these functions. Restriction enzyme cleavage sites in R751 deoxyribonucleic acid are clustered in regions of the plasmid physical map. Neither region is required for plasmid maintenance or transfer, although one determines resistance to trimethoprim. A similar clustering of cleavage sites is seen with RK2, which nevertheless has a very different restriction map. 相似文献
17.
Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27 下载免费PDF全文
The transfer 2 region (Tra2) of the conjugative plasmid drR27 (derepressed R27) was analyzed by PSI-BLAST, insertional mutagenesis, genetic complementation, and an H-pilus assay. Tra2 contains 11 mating-pair formation (Mpf) genes that are essential for conjugative transfer, 9 of which are essential for H-pilus production (trhA, -L, -E, -K, -B, -V, -C, -P, and -W). TrhK has similarity to secretin proteins, suggesting a mechanism by which DNA could traverse the outer membrane of donors. The remaining two Mpf genes, trhU and trhN, play an auxiliary role in H-pilus synthesis and are proposed to be involved in DNA transfer and mating-pair stabilization, respectively. Conjugative transfer abilities were restored for each mutant when complemented with the corresponding transfer gene. In addition to the essential Mpf genes, three genes, trhO, trhZ, and htdA, modulate R27 transfer frequency. Disruption of trhO and trhZ severely reduced the transfer frequencies of drR27, whereas disruption of htdA greatly increased the transfer frequency of wild-type R27 to drR27 levels. A comparison of the essential transfer genes encoded by the Tra2 and Tra1 (T. D. Lawley, M. W. Gilmour, J. E. Gunton, L. J. Standeven, and D. E. Taylor, J. Bacteriol. 184:2173-2183, 2002) of R27 to other transfer systems illustrates that the R27 conjugative transfer system is a chimera composed of IncF-like and IncP-like transfer systems. Furthermore, the Mpf/type IV secretion systems encoded by IncH and IncF transfer systems are distinct from that of the IncP transfer system. The phenotypic and ecological significance of these observations is discussed. 相似文献
18.
19.
20.
Abstract A Tn7 insertion in the DNA primase gene of the promiscuous IncP-1 plasmid R18 specifically reduced plasmid conjugational transfer from Pseudomanas aeruginosa donors to Pseudomonas stutzeri recipients. The cloned primase gene was found to efficiently complement the mutation in both the donor and in the recipient suggesting that the primase is required for priming single-stranded plasmid DNA in the donor prior to its transit to the recipient where it is converted to the double- stranded form. 相似文献